Изобретение относится к области размагничивания судов с ферромагнитным корпусом и касается вопросов формирования токов в размагничивающей обмотке.
После постройки судна с ферромагнитным корпусом необходимо провести электромагнитную обработку (ЭМО) судна с целью уменьшения построечных остаточных намагничений и стабилизации достигнутого магнитного состояния.
Для этой цели снаружи корпуса судна размещается соленоидальная размагничивающая обмотка, в которую подается последовательность знакопеременных импульсов тока, образующих цикл (ЭМО) и создающих размагничивающее поле в ферромагнитном корпусе судна.
Известен цикл ЭМО, состоящий из последовательности одиночных импульсов, отстоящих друг от друга на значительные временные промежутки (авторское свидетельство №1374293, СССР, 1988 г.). Во время пауз между импульсами (временных промежутков) производятся измерения внешнего магнитного поля, по полученным результатам измерения расчетным путем определяют параметры следующего импульса данного цикла.
Данному способу присущи существенные недостатки:
- очень большая продолжительность цикла ЭМО, которая может превышать продолжительность рабочей смены,
- зависимость результатов обработки от влияния неизбежных погрешностей, вызванных очень большим объемом результатов измерений (вероятность появления ошибки увеличивается при увеличении объема измерений).
Более совершенный способ размагничивания судов, основанный на использовании цикла трапецеидальных импульсов и принятый за прототип, изложен в книге Н.Д. Богачевой «Физика и технология размагничивания» - СПб.: Механобр, 1997, с. 70.
Цикл ЭМО в этом техническом решении образуют совокупностью знакопеременных убывающих по величине трапецеидальных импульсов.
Существенным является то, что при проведении ЭМО представляется реальная возможность формировать только импульсы напряжения, подаваемого в обмотку размагничивания. Если обмотка представляет собой только активное сопротивление, то форма импульсов тока будет при любых условиях соответствовать импульсам напряжения.
Если в нагрузке будет присутствовать индуктивная составляющая (а это - неизбежно), то импульс тока будет точно соответствовать импульсу напряжения только при синусоидальном законе изменения напряжения. В этом случае импульс не деформируется, а изменяется его амплитуда и сдвигается фаза.
Использование импульсов напряжения трапецеидальной формы практически лишает возможности управлять величиной и формой импульса тока, а следовательно, и поля. Это является существенным недостатком прототипа.
При использовании синусоидальных импульсов необходимо определить оптимальную частоту переменного размагничивающего поля. При этом нужно учитывать «поверхностный эффект». Поверхностный эффект рассматривают как зависящий от частоты результат затухания электромагнитной волны, проникшей в проводник из окружающего диэлектрика.
В случае действия плоской синусоидальной волны в однородной среде амплитуды напряженности внешнего магнитного поля Ho затухают в толще материала, помещенного в эту среду, по экспоненциальному закону:
H=Hoe-λх,
где λ=(πfµσ)0,5,
H - величина напряженности магнитного поля в толще материала,
f - частота,
µ - абсолютная магнитная проницаемость,
σ - электропроводность,
x - координата измерения глубины.
Если x=xo=λ-1, то на этой глубине амплитуда внешнего поля уменьшается в «e» раз (e=2,72). Эта глубина xo обычно называется глубиной проникновения. Если она равна толщине материала, то на внутренней поверхности корпуса от внешнего поля остается лишь 37%. Такое ослабление (более чем в 2 раза) в значительной мере снижает качество размагничивания, поэтому необходимо увеличивать амплитуду внешнего поля. Альтернативой этой операции является уменьшение частоты внешнего поля.
Анализ экспериментальных данных позволяет утверждать, что ослабление поля на внутренней поверхности размагничиваемого объекта в процессе ЭМО не должно быть более чем в два раза. Это достигается в случаях, когда толщина корпуса не превосходит 70% от глубины проникновения магнитного поля для его материала (xo), определенной по приведенной выше формуле.
Задачей изобретения является повышение качества размагничивания и уменьшение потребляемой электроэнергии при проведении ЭМО путем снижения частоты используемого для обработки переменного магнитного поля.
Выполнение поставленной задачи достигается тем, что в способе размагничивания судов с ферромагнитными корпусами для ЭМО используют циклы, импульсы в которых имеют синусоидальную форму, а частота размагничивающего поля выбирается из условия достижения на внутренней поверхности корпуса ослабления поля не более чем на 50%.
Для этого величину максимально допустимой частоты синусоидального размагничивающего поля определяют и устанавливают в соответствии с формулой:
f=0,5(πd2µσ)-1.
В качестве примера может быть определена максимально допустимая частота при следующих исходных данных: толщина корпуса судна d=0,04 м, σ=107 (Ом·м), µ=800π 10-7 Гн/м,
f=0,04 Гц.
Сущность предлагаемого изобретения поясняется чертежом, на котором изображены графики изменения напряженности внешнего магнитного поля при проникновении его в материал корпуса. Кривая H1 показывает изменение (затухание) напряженности внешнего магнитного поля при рекомендуемой по предложенному способу частоте, а кривая H2 - при большей частоте.
Предлагаемый способ позволяет существенно снизить энергопотребление при проведении ЭМО и повысить ее качество.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАЗМАГНИЧИВАНИЯ СУДНА | 2014 |
|
RU2583257C1 |
СПОСОБ РАЗМАГНИЧИВАНИЯ СУДНА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2015 |
|
RU2616508C2 |
Способ применения переменного магнитного поля для определения параметров остаточного намагничения ферромагнитных объектов в качестве аналога действия механической нагрузки | 2020 |
|
RU2748850C1 |
СПОСОБ ЗАЩИТЫ МЕТАЛЛИЧЕСКОГО ФЕРРОМАГНИТНОГО ОБЪЕКТА ОТ МАГНИТОМЕТРИЧЕСКОГО ОБНАРУЖЕНИЯ | 2017 |
|
RU2647482C1 |
СПОСОБ РАЗМАГНИЧИВАНИЯ СУДНА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 1994 |
|
RU2095277C1 |
СПОСОБ ФОРМИРОВАНИЯ СИГНАЛОВ УПРАВЛЕНИЯ ТОКАМИ В ОБМОТКАХ РАЗМАГНИЧИВАЮЩЕГО УСТРОЙСТВА СУДНА С ФЕРРОМАГНИТНЫМ КОРПУСОМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2009 |
|
RU2415050C2 |
СПОСОБ РАЗМАГНИЧИВАНИЯ КРУПНОГАБАРИТНОГО ФЕРРОМАГНИТНОГО ИЗДЕЛИЯ | 2016 |
|
RU2636929C2 |
Устройство для размагничивания ферромагнитных тел | 1990 |
|
SU1734126A1 |
Способ контроля физико-механических свойств изделий из ферромагнитных материалов | 1990 |
|
SU1826051A1 |
УСТРОЙСТВО ДЛЯ АВТОМАТИЧЕСКОЙ ЗАЩИТЫ ЦВЕТНОГО КИНЕСКОПА ОТ МАГНИТНЫХ ПОЛЕЙ | 1991 |
|
RU2039421C1 |
Изобретение относится к области судостроения, в частности к размагничиванию судов с ферромагнитными корпусами, и касается вопросов определения оптимальных параметров цикла электромагнитной обработки (ЭМО). В заявленном способе размагничивания судов с ферромагнитными корпусами для ЭМО используют циклы, импульсы в которых имеют синусоидальную форму, а частота размагничивающего поля выбирается из условия достижения на внутренней поверхности корпуса ослабления размагничивающего поля не более, чем 50%. Для этого частоту f синусоидального размагничивающего поля устанавливают в соответствии с формулой: f=0,5(πd2µσ)-1, где d - толщина корпуса судна, µ - абсолютная магнитная проницаемость материала корпуса, σ - удельная электропроводимость. Предлагаемый способ позволяет снизить энергопотребление и повысить качество электромагнитной обработки. 1 ил.
Способ размагничивания судов с ферромагнитным корпусом, включающий в себя воздействие на судно последовательности знакопеременных затухающих по величине импульсов внешнего магнитного поля, отличающийся тем, что используют импульсы синусоидальной формы, частота которых определяется по формуле
f=0,5(πd2µσ)-1,
где f - частота изменения внешнего поля,
d - толщина корпуса судна,
µ - абсолютная магнитная проницаемость материала корпуса,
σ - удельная электропроводимость.
СПОСОБ РАЗМАГНИЧИВАНИЯ КРУПНОГАБАРИТНЫХ ИЗДЕЛИЙ | 1999 |
|
RU2157014C1 |
ИСТОЧНИК ПИТАНИЯ ЭЛЕКТРОМАГНИТНЫХ КОМПЕНСАТОРОВ | 2005 |
|
RU2289192C1 |
СПОСОБ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ ТРАКЦИОННОЙ ОТСЛОЙКИ СЕТЧАТКИ | 2009 |
|
RU2400193C1 |
JP 2007153124 A, 21.06.2007. |
Авторы
Даты
2016-04-20—Публикация
2014-12-05—Подача