Изобретение относится к биотехнологии микроводорослей и может быть использовано при промышленном получении биомассы диатомовой водоросли Cylindrotheca closterium.
Микроводоросль С. closterium является ценным сырьем для получения биологически активных веществ. Она содержит в достаточном количестве полиненасыщенные жирные кислоты (40% от общего содержания жирных кислот) и каротиноиды, что предполагает возможность ее массового культивирования. Содержание фукоксантина в клетках составляет 78% от общего количества каротиноидов (Das et al., 2008; Peng et al., 2011). Известно, что фукоксантин обладает антиоксидантными, антимутогенными и антиканцерогенными свойствами, которые обусловливают его антиокислительное действие (Kotake-Nara et al., 2001; Das et al., 2008). Благодаря этим ценным качествам биомасса Cylindrotheca closterium широко применяется в мировой практике в качестве кормовых добавок для двустворчатых моллюсков.
Известен способ (см. Guillardet al., 1963), в котором микроводоросль С. closterium культивировали на питательной среде F/2 с содержанием NaNO3 - 7,5 мг·л-1; NaH2PO4×2H2O - 5 мг·л-1; Na2SiO3×9H2O - 30 мг·л-1; Na2EDTA - 4,36 мг·л-1; FeSO4×7H2O - 3,15 мг·л-1 в колбах объемом 125 мл при освещенности 240 мк·моль·фотон·м-2·с-1 и температуре 27°С в накопительном режиме культивирования (Kingston, 2009). При таких условиях культивирования зафиксирована максимальная плотность культуры (2,94±0,02).106 клеток на 1 мл.
Известен способ, в котором культуру С.closterium выращивали на питательной среде F/2 (Guillard et al., 1963) с содержанием NaNO3 - 7,5 мг·л-1; NaH2PO4×2H2O - 5 мг·л-1; Na2SiO3×9H2O - 30 мг·л-1; Na2EDTA - 4,36 мг·л-1; FeSO4×7H2O - 3,15 мг·л-1 в колбах объемом 200 мл при различных уровнях освещенности: при высоком уровне - 268 мк·моль·фотон·м-2·с-1 и при низком уровне - 27 мк·моль·фотон·м-2·с-1 и температуре 15°С в накопительном режиме культивирования (Rijstenbil, 2003). При высоком уровне освещения зафиксирована максимальная плотность культуры (5±0,02)·105 клеток на 1 мл.
Наиболее близким к заявляемому по технической сущности является способ выращивания Cylindrotheca closterium на питательной среде F (Guillard, Ryther, 1963) с содержанием NaNO3 - 150 мг·л-1; NaH2PO4×2H2O - 10 мг·л-1; Na2SiO3×9H2O - 60 мг·л-1; Na2EDTA - 8,72 мг·л-1; FeSO4×7H2O - 6,3 мг·л-1 в колбах объемом 250 мл при освещенности 180 мк·моль·фотон·м-2·с-1 и температуре 20°С в накопительном режиме культивирования (Affan et al., 2009). При таких условиях культивирования зафиксированы максимальная плотность культуры (7,2±0,02)·104 клеток на 1 мл и выход биомассы 1,6 г сухого вещества на 1 л культуры. Недостаток данного метода заключается в получении небольшого количества биомассы культуры Cylindrotheca closterium из-за использования питательной среды F, обедненной биогенными элементами.
В основу изобретения «Способ культивирования диатомовой водоросли Cylindrotheca closterium» поставлена задача увеличения выхода биомассы культуры микроводоросли путем увеличения скорости роста и накопления биомассы Cylindrotheca closterium.
Поставленная задача достигается тем, что культуру диатомовой водоросли Cylindrotheca closterium выращивают на модифицированной питательной среде (табл. 1). Модификация заключается в увеличении концентрации всех биогенных элементов среды соответственно представлениям о субстрат зависимом росте микроорганизмов в культуре (Тренкеншу, 2010 а, б). Показано, что использование обедненной стандартной питательной среды F для интенсивного культивирования С. closterium с целью накопления биомассы нецелесообразно. Но при увеличении концентрации биогенных элементов (см. Фиг. 1) угол наклона накопительной кривой повышается, т.е. продуктивность культуры в начальный момент времени зависит от концентрации биогенных элементов в среде. Максимальное значение плотности культуры (8·106 кл.·мл-1) в стационарной фазе роста, так же, как и продуктивность, прямо пропорционально зависит от концентрации биогенных элементов в среде.
Выращивание осуществляется при круглосуточном освещении 13,5 клк в накопительном режиме в культиваторах с рабочей толщиной освещаемого слоя 2 и 5 см. При таких условиях культивирования выход биомассы микроводоросли С.closterium составляет 6,98 г сухого вещества на 1 л культуры в культиваторе с рабочей толщиной освещаемого слоя 2 см и 4,94 г сухого вещества на 1 л культуры в культиваторе с рабочей толщиной освещаемого слоя 5 см (см. Фиг. 1 и Фиг. 2).
Общим для прототипа (Affan et al., 2009) и заявляемого способа является применение накопительного режима культивирования. Основное отличие от прототипа заключается в том, что в заявляемом способе при культивировании используется питательная среда, обогащенная макро и микроэлементами, количественный состав которой авторами был подобран в результате экспериментов.
Способ поясняется иллюстрациями. Фиг. 1 - Динамика плотности накопительной культуры С. closterium при различной концентрации биогенных элементов в питательной среде, выращенной в культиваторе с рабочей толщиной освещаемого слоя 5 см. Фиг. 2 - Динамика плотности накопительной культуры С.closterium при различной концентрации биогенных элементов в питательной среде, выращенной в культиваторе с рабочей толщиной освещаемого слоя 2 см.
Способ культивирования одноклеточной диатомовой водоросли С.closterium реализуется следующим образом.
Для культивирования использовалась диатомовая водоросль С.closterium, коллекционное хранение которой осуществлялось на питательной среде F/2 при температуре 20-21°С. Для получения инокулята культуру водоросли в течение 5-7 дней выращивают методом накопительной культуры на среде F, в которой концентрации всех биогенных элементов увеличены в пять раз (5F) при освещении 6 клк. при непрерывном барботаже воздухом (1 л·мин-1·л-1 культуры).
Для засева культиваторов используют активно делящуюся культуру, взятую на линейной стадии роста, когда ее продуктивность максимальна. Суспензию клеток вносят в культиваторы из такого расчета, чтобы начальная плотность культур составляла не менее 0,1-0,2 г сухого вещества на 1 л культуры. Процесс культивирования осуществляют на модифицированной питательной среде (табл. 1).
Пример 1
Для культивирования использовали штамм из коллекции культур микроводорослей отдела экологической физиологии водорослей ИМБИ им. А.О. Ковалевского РАН.
Для получения инокулята штамм в течение 7 суток выращивали методом накопительной культуры в колбах объемом 1 л при освещении 6 клк на питательной среде F, в которой концентрации всех биогенных элементов увеличены в пять раз (5F). Полученную культуру использовали в качестве инокулята. Культуру переносили в культиваторы плоскопараллельного типа объемом 3 л c рабочей толщиной слоя 5 см, содержащие модифицированную питательную среду (табл. 1), и продолжали выращивать в течение 7 суток при освещении 13,5 клк и непрерывном барботаже воздухом со скоростью 1 л·мин-1·л-1 культуры, и при температуре 20-21°С до плотности 5 г сухой биомассы на 1 л культуры. Выход сухой биомассы в стационарной фазе роста составил 5 г на 1 л культуры.
Пример 2
Для культивирования использовали штамм из коллекции культур микроводорослей отдела экологической физиологии водорослей ИМБИ им. А.О. Ковалевского РАН.
Для получения инокулята штамм в течение 7 суток выращивали методом накопительной культуры в колбах объемом 1 л при освещении 6 клк на питательной среде F, в которой концентрации всех биогенных элементов увеличены в пять раз (5F). Полученную культуру использовали в качестве инокулята. Культуру переносили в культиваторы плоскопараллельного типа объемом 2 л с рабочей толщиной слоя 2 см, содержащие модифицированную питательную среду (табл. 1), и продолжали выращивать в течение 10 суток при освещении 13,5 клк и непрерывном барботаже воздухом со скоростью 1 л·мин-1·л-1 культуры, и при температуре 20-21°С до плотности 7 г сухой биомассы на 1 л культуры. Выход сухой биомассы в стационарной фазе роста составил 7 г на 1 л культуры.
Таким образом, продуктивность по биомассе в известном способе в 25 раз ниже, чем в предлагаемом способе.
Источники информации
1. Тренкеншу Р.П. Простейшие модели роста микроводорослей. 5. Скорость энергообмена // Экология моря. - 2010 а. - Спец. вып. 80: Биотехнология водорослей. - С. 79-84.
2. Тренкеншу Р.П. Простейшие модели роста микроводорослей. 6. Предельные скорости роста // Экология моря. - 2010 б. - Спец. вып. 80: Биотехнология водорослей. - С. 85-91.
3. Affan А., Нео S-.J., Jeon Y-.J., Lee J.-В. Optimal growth conditions and antioxidative activities of Cylindrotheca closterium // J. Phycol. - 2009. - 45. - P. 1405-1415.
4. Das, S.K., Hashimoto, Т., Kanazawa, K. Growth inhibition of human hepatic carcinoma HepG2 cells by fucoxanthin is associated with down regulation of cyclin D // Biochim. Biophys. Acta. - 2008. - 4. - P. 743-749.
5. Guillard, R.R., Ryther, J.H. Studies on marine planktonic diatoms. I. Cyclotella nana Husted and Detonula confervacea (Cleve) Cran // Can J. Microbiol. - 1963. -8. - P. 229-239.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения биомассы диатомовой водоросли Cylindrotheca closterium с повышенным содержанием фукоксантина | 2016 |
|
RU2655221C2 |
Способ получения биомассы диатомовой водоросли Cylindrotheca closterium, обогащенной железом, используемой в качестве сырья для получения биологически активных добавок к пище | 2017 |
|
RU2644682C1 |
СПОСОБ ПОЛУЧЕНИЯ БИОМАССЫ ДИАТОМОВОЙ ВОДОРОСЛИ NANOFRUSTULUM SHILOI | 2023 |
|
RU2809513C1 |
СПОСОБ КУЛЬТИВИРОВАНИЯ ОДНОКЛЕТОЧНОЙ ЗЕЛЕНОЙ МИКРОВОДОРОСЛИ DUNALIELLA SALINA ДЛЯ ПОЛУЧЕНИЯ БИОМАССЫ | 2014 |
|
RU2541446C1 |
Способ выращивания микроводоросли Porphyridium purpureum | 2016 |
|
RU2675318C2 |
СПОСОБ КУЛЬТИВИРОВАНИЯ ДИАТОМОВОЙ ВОДОРОСЛИ CHAETOCEROS CALCITRANS - КОРМА ДЛЯ ЛИЧИНОК ГИГАНТСКОЙ УСТРИЦЫ CRASSOSTREA GIGAS | 2017 |
|
RU2663328C1 |
ШТАММ ЗЕЛЁНОЙ МИКРОВОДОРОСЛИ DUNALIELLA SALINA ДЛЯ ПОЛУЧЕНИЯ ЕЁ БИОМАССЫ В ПРОМЫШЛЕННЫХ УСЛОВИЯХ | 2021 |
|
RU2788527C2 |
Способ культивирования одноклеточных микроводорослей Chaetoceros muelleri и Isochrysis galbana - живого корма для личинок морских беспозвоночных | 2022 |
|
RU2793471C1 |
СПОСОБ КУЛЬТИВИРОВАНИЯ МОРСКОЙ МИКРОВОДОРОСЛИ PORPHYRIDIUM PURPUREUM | 2023 |
|
RU2823597C1 |
СПОСОБ ПОЛУЧЕНИЯ БИОМАССЫ СПИРУЛИНЫ С ВЫСОКИМ СОДЕРЖАНИЕМ БИОЛОГИЧЕСКИ АКТИВНЫХ СОЕДИНЕНИЙ | 2022 |
|
RU2790921C1 |
Изобретение относится к биотехнологии и может быть использовано при промышленном получении биомассы диатомовой водоросли Cylindrotheca closterium. Способ предусматривает выращивание культуры диатомовой водоросли Cylindrotheca closterium в течение 7-10 суток в плоскопараллельных культиваторах с рабочей толщиной слоя 2-5 см при круглосуточном освещении 13,5 клк на модифицированной питательной среде до плотности 5-7 г сухой биомассы на 1 л культуры. Изобретение позволяет повысить выход биомассы культуры микроводоросли. 1 табл., 2 пр., 2 ил.
Способ получения биомассы диатомовой водоросли Cylindrotheca closterium, предусматривающий получение инокулята и культивирование культуры в накопительном режиме на питательной среде F, отличающийся тем, что культуру диатомовой водоросли Cylindrotheca closterium выращивают в течение 7-10 суток в плоскопараллельных культиваторах с рабочей толщиной слоя 2-5 см и при круглосуточном освещении 13,5 клк на модифицированной питательной среде, имеющей состав, г·л-1:
GUILLARD R.R, RUTHER J.H., Studies or marine planktonic diatoms//Canadian journal of microbiology, 1962, vol.8, P | |||
Приспособление для подачи воды в паровой котел | 1920 |
|
SU229A1 |
KINGSTON M.B., Growth and motility of the diatom cylindrotheca closterium: implications for commercial application//Journal of the North Carolina Academy of Science, 2009, vol 124, (4), P | |||
Прибор для определения всасывающей силы почвы | 1921 |
|
SU138A1 |
СПОСОБ КУЛЬТИВИРОВАНИЯ МИКРОВОДОРОСЛЕЙ НА ОСНОВЕ ШТАММА "CHLORELLA VULGARIS ИФР № С-111" | 2000 |
|
RU2176667C1 |
US 20110020914 A1, 27.01.2011. |
Авторы
Даты
2016-04-20—Публикация
2014-09-25—Подача