Изобретение относится к космической технике и может быть использовано при определении погрешности датчика микроускорений на космическом аппарате (КА).
Для измерения ускорений используются специальные датчики и приборы - акселерометры. В процессе их использования вследствие различных причин происходит ухудшение точности измерений и появляется необходимость установления величины погрешности прибора, т.е. его тарировка. Такая задача возникает и перед началом использования прибора.
Известен способ тарировки датчиков ускорений - акселерометров, реализуемый устройством для создания нормированных ускорений при поверке акселерометров [1] (патент RU 2393488 с 1 по заявке 2009112707/28 от 06.04.2009). Данный способ не применим в космическом полете, где измеряются малые ускорения ~10-3 - 10-7g, где
Известен способ тарировки датчика микроускорений, основанный на сопоставлении измерений с калиброванными значениями и определении погрешностей в измерениях датчика микроускорений [2] (патент США №3779065, 1973 г.). В данном способе, взятом авторами за прототип, тарировка датчиков осуществляется путем воздействия на датчик бойком с последующим измерением воздействия и фиксированием показаний датчика. Следует отметить, что в космическом полете на КА возникают обычно малые ускорения и их значение составляет 10-7g - 10-3g [3]. Их точное измерение является весьма сложной технической задачей и для ее решения используются различные датчики микроускорений [4]. В процессе полета возникают неизбежные погрешности в показаниях используемых датчиков и появляется необходимость выполнения их тарировки.
Известные способы, включая способ-прототип, не позволяют решить задачу тарировки датчиков микроускорений в космическом полете.
Задачей, на решение которой направлено настоящее изобретение, является определение погрешностей датчика микроускорений в космическом полете.
Технический результат достигается тем, что в способе тарировки датчика микроускорений в космическом полете, включающем сравнение измерений датчика микроускорений с калиброванными значениями и определение погрешностей в измерениях датчика микроускорений, фиксируют в связанной с космическим аппаратом системе координат вектор , определяющий положение датчика микроускорений, измеряют угловую скорость космического аппарата
где - микроускорение в связанной с космическим аппаратом системе координат;
µe - гравитационный параметр Земли;
r - расстояние от центра Земли до центра масс космического аппарата;
- орт оси орбитальной системы координат, направленной по радиус-вектору космического аппарата;
- скорость космического аппарата;
с - баллистический коэффициент космического аппарата,
и сопоставляя калиброванное значение микроускорения и измеренное значение, определяют погрешность в измерениях датчика микроускорений.
За счет выполнения предлагаемых действий возможна тарировка датчика микроускорений в космическом полете. Главная проблема в выполнении тарировки на КА заключается в создании калиброванных значений микроускорений малой величины (до 10-7g). В предлагаемом способе калиброванные значения микроускорений создаются за счет отличительных действий способа. Для анализа процессов, происходящих в аппаратуре космических экспериментов по микрогравитации, главным образом необходимо знать квазипостоянные величины микроускорений [3], [4]. Квазипостоянные значения микроускорений обусловлены вращением КА вокруг центра масс, неоднородностью гравитационного поля в пределах конструкции КА и действием на КА сопротивления атмосферы. Измеряя угловую скорость и угловое ускорение ΚΑ , можно для заданного вектором положения датчика микроускорений точно определить составляющую калиброванного значения микроускорений за счет вращения КА вокруг центра масс. Измерив угловое положение КА, можно точно определить составляющую, возникающую за счет неоднородности гравитационного поля в пределах конструкции КА. Измеряя точно орбиту КА, можно по изменению орбиты КА и его угловому положению определить плотность атмосферы на высоте полета КА и его ускорение от сопротивления атмосферы. Сложив три составляющие, получим калиброванное значение микроускорений. Сопоставление калиброванного значения микроускорений с измеренным значением, позволит определить погрешность в измерениях датчика микроускорений.
В настоящее время технически все готово для реализации предложенного способа на КА, например, на МКС или на транспортном грузовом корабле ТГК «Прогресс». Для измерения микроускорений на КА могут использоваться датчики типа ИМУ, ИМУ-Ц, MAMS и др. Для измерения угловой скорости и углового ускорения могут использоваться существующие датчики угловых скоростей и угловых ускорений. Для определения углового положения КА могут использоваться датчики ориентации: солнечный датчик, звездный датчик, магнитометр и т.д. Подобные приборы используются, например, на МКС и ТГК «Прогресс». Для определения орбиты КА могут использоваться высокоточные измерения радиоконтроля орбиты, или измерения спутниковых навигационных систем GPS и ГЛОНАСС. Приемники GPS и ГЛОНАСС уже установлены, например, на МКС. Для выполнения расчетов и сопоставления калибровочных значений микроускорений с измеренными могут использоваться вычислительные средства МКС, ТГК «Прогресс».
Список литературы
1. Патент RU 2393488 с 1 по заявке 2009112707/28 от 06.04.2009.
2. Патент США №3779065, 1973 г.
3. М.Ю. Беляев. «Научные эксперименты на космических кораблях и орбитальных станциях», М.: «Машиностроение», 1984.
4. Д.М. Климов, В.И. Полежаев, М.Ю. Беляев, А.И. Иванов, С.Б. Рябуха, В.В. Сазонов. «Проблемы и перспективы использования невесомости в экспериментах на орбитальных станциях». РКТ, серия 12, выпуск 1-2, 2011.
5. Основы теории полета космических аппаратов. М.: «Машиностроение, 1972.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА | 2017 |
|
RU2669164C1 |
СПОСОБ КАЛИБРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ | 2023 |
|
RU2817003C1 |
СПОСОБ ЗОНДИРОВАНИЯ СЕЙСМООРБИТАЛЬНЫХ ЭФФЕКТОВ И ВАРИАЦИЙ ПЛОТНОСТИ ВЕРХНЕЙ АТМОСФЕРЫ | 2019 |
|
RU2705161C1 |
СПОСОБ УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ КОСМИЧЕСКОГО ТРАНСПОРТНОГО ГРУЗОВОГО КОРАБЛЯ С НЕПОДВИЖНЫМИ ПАНЕЛЯМИ СОЛНЕЧНЫХ БАТАРЕЙ ПРИ ПРОВЕДЕНИИ РАБОТ В УСЛОВИЯХ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ | 2013 |
|
RU2539266C2 |
СПОСОБ ОДНООСНОЙ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА ВЫТЯНУТОЙ ФОРМЫ | 2015 |
|
RU2594057C1 |
СПОСОБ УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ КОСМИЧЕСКОГО АППАРАТА ПРИ ПРОВЕДЕНИИ ЭКСПЕРИМЕНТОВ С НАУЧНОЙ АППАРАТУРОЙ ПО ИЗУЧЕНИЮ КОНВЕКЦИИ | 2014 |
|
RU2581281C2 |
СПОСОБ ОДНООСНОЙ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА ВЫТЯНУТОЙ ФОРМЫ | 2015 |
|
RU2594054C1 |
СПОСОБ ОДНООСНОЙ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА ВЫТЯНУТОЙ ФОРМЫ | 2020 |
|
RU2764815C1 |
СПОСОБ ОДНООСНОЙ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА ВЫТЯНУТОЙ ФОРМЫ | 2015 |
|
RU2594056C1 |
СПОСОБ ОДНООСНОЙ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА ВЫТЯНУТОЙ ФОРМЫ | 2010 |
|
RU2457159C2 |
Изобретение относится к космической технике и может быть использовано при определении погрешности датчика микроускорений на космическом аппарате (КА). Технический результат - обеспечение тарировки датчика микроускорений в космическом полете. Способ тарировки датчика микроускорений в космическом полете, включает в себя сопоставление измерений с калиброванными значениями и определение погрешностей в измерениях датчика, фиксирование в связанной с космическим аппаратом системе координат вектор определяющий положение датчика микроускорений, измерение угловой скорости космического аппарата и его угловое ускорение определение углового положения и орбиты космического аппарата, по изменению орбиты космического аппарата и определенному его угловому положению оценивают плотность атмосферы ρа на высоте полета космического аппарата и ускорение его торможения, калиброванное значение микроускорения определяют по формуле где:
- микроускорение в связанной с космическим аппаратом системе координат;
µe - гравитационный параметр Земли;
r - расстояние от центра Земли до центра масс космического аппарата;
- орт оси орбитальной системы координат, направленной по радиус-вектору космического аппарата;
- скорость космического аппарата;
с - баллистический коэффициент космического аппарата,
и сопоставляя калиброванное значение микроускорения и измеренное значение, определяют погрешность в измерениях датчика микроускорений.
Способ тарировки датчика микроускорений в космическом полете, включающий сравнение измерений датчика микроускорений с калиброванными значениями и определение погрешностей в измерениях датчика микроускорений, отличающийся тем, что фиксируют в связанной с космическим аппаратом системе координат вектор
где
µe - гравитационный параметр Земли;
r - расстояние от центра Земли до центра масс космического аппарата;
c - баллистический коэффициент космического аппарата,
и сопоставляя калиброванное значение микроускорения и измеренное значение, определяют погрешность в измерениях датчика микроускорений.
US 3779065 A, 18.12.1973 | |||
СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ ЦЕНТРА МАСС КОСМИЧЕСКОГО АППАРАТА В ПРОЦЕССЕ ЕГО УПРАВЛЕНИЯ С ПОМОЩЬЮ СИЛОВЫХ ПРИВОДОВ | 1997 |
|
RU2114031C1 |
Способ градуировки акселерометров | 1989 |
|
SU1709225A2 |
US 2014278191 A1, 18.09.2014. |
Авторы
Даты
2016-05-10—Публикация
2014-10-21—Подача