СИСТЕМА РАДИАЦИОННОГО КОНТРОЛЯ ТЕЧИ ТРУБОПРОВОДА ЯЭУ С ВОДЯНЫМ ТЕПЛОНОСИТЕЛЕМ Российский патент 2016 года по МПК G21D1/02 

Описание патента на изобретение RU2584134C1

Изобретение относится к технологическому контролю ядерных энергетических установок с водяным теплоносителем и может быть использовано для обнаружения, локализации и определения величины течи теплоносителя из трубопроводов первого контура.

Известна система, рассмотренная в статье «Разработка системы радиационного контроля течи теплоносителя из первого контура реактора типа ВВЭР» (Гидродинамика и безопасность АЭС / Сборник тезисов докладов на отраслевой конференции «Теплофизика-99». - Обнинск, 1999).

Система включает измерительные каналы, устройства отбора и транспортировки воздушной среды из контролируемого помещения к датчикам излучения. Диагностическим признаком течи трубопровода главного циркуляционного контура с водяным теплоносителем является обнаружение в контролируемом объеме газообразных продуктов активации теплоносителя, таких как азот-13, азот-16 или фтор-18. Система с помощью устройства отбора и транспортировки воздушной среды из контролируемого объема направляет ее в детектирующий модуль. Величина активности газообразных продуктов активации в контролируемом объеме зависит от величины течи теплоносителя и мощности реактора. Обнаружение газообразного продукта активации теплоносителя в контролируемом объеме признается как факт обнаружения течи теплоносителя. Величину течи определяют исходя из измеренной объемной активности изотопа и знания его концентрации в теплоносителе.

Недостатком известной системы является то, что она определяет место течи трубопровода с точностью до длины контролируемого участка трубопровода, которая может достигать до 10 м. Это связано с тем, что некоторые из контролируемых изотопов имеют относительно малое время жизни (азот-16 - 7,11 с) и они распадаются в процессе транспортировки по данному трубопроводу к месту установки комплекса измерения активности.

Наиболее близким по технической сущности к заявляемой системе является система, рассмотренная в работе «Автоматизированная система обнаружения течи теплоносителя по объемной активности аэрозолей» (Системы и оборудование радиационного и технологического контроля. Каталог продукции ООО НПП «РАДИКО», Издание 1, 2011).

Система содержит комплексы измерения объемной активности воздушной среды помещений, каждый из которых включает датчик радиоактивного излучения, модуль обработки сигналов датчика, устройство отбора и транспортировки проб воздушной среды из зоны возникновения течи к датчику и информационно-вычислительное устройство, обеспечивающее сбор, обработку, хранение и представление информации.

Работа системы заключается в следующем. Система производит отбор проб воздуха из контролируемого помещения и транспортировку его по длинному трубопроводу к месту установки датчиков измерения объемной активности воздуха. По результатам измерений поверхностной активности фильтра и прошедшего через него объема воздуха определяется объемная активность поступающего воздуха, и в случае статистически значимого отклонения этой активности от нормы делается вывод о наличии течи теплоносителя и проводится оценка ее величины.

Недостатком системы являются относительно большие неопределенности при определении местоположения и массового расхода течи. Система определяет местоположение течи с точностью до размера помещения, в котором устанавливается контролируемое оборудование. Погрешность определения величины течи возникает из-за отсутствия строгой зависимости между величиной течи и объемной активностью аэрозолей. Активность аэрозолей зависит от радиационного состояния активной зоны, количества твэлов с дефектными оболочками, находящимися в активной зоне, и размера дефектов. Поскольку процесс попадания продуктов деления в теплоноситель - процесс случайный, то это обстоятельство не позволяет однозначно связать суммарную объемную активность регистрируемых аэрозолей с величиной течи теплоносителя.

Задача изобретения состоит в устранении указанного недостатка, а именно снижении неопределенности при определении местоположения и массового расхода течи.

Технический результат изобретения - повышение точности определения местоположения и массового расхода течи.

Для устранения указанного недостатка в системе радиационного контроля течи трубопровода ЯЭУ с водяным теплоносителем, содержащей комплекс измерения активности анализируемой среды, включающий датчик радиоактивного излучения и устройство отбора и транспортировки анализируемой среды к датчику, и информационно-вычислительное устройство, предлагается:

- на каждом контролируемом участке трубопровода дополнительно установить, по крайней мере, два комплекса измерения активности анализируемой среды, включающие датчики радиоактивного излучения, которые избирательно-чувствительны к излучению азота-16;

- датчики радиоактивного излучения расположить по всей длине трубопровода на известных расстояниях;

- устройства отбора и транспортировки анализируемой среды выполнить в виде патрубков, проходящих через в теплоизоляцию трубопровода;

- одни торцы патрубков вывести в подизоляционное пространство трубопровода, а другие торцы патрубков вывести к датчикам радиоактивного излучения;

- информационно-вычислительное устройство снабдить техническими средствами программного определения местоположения и массового расхода течи по совокупным показаниям задействованных комплексов измерения активности азота-16.

Сущность изобретения поясняется схемой системы радиационного контроля течи теплоносителя и изображением контролируемого участка трубопровода, где приняты следующие обозначения: 1 - трубопровод; 2 - теплоизоляция; 3 - теплоноситель; 4 - подизоляционное пространство; 5 - патрубок; 6 - датчик радиоактивного излучения; 7 - кабельная линия связи; 8 - модуль обработки сигналов; 9 - информационная линия связи; 10 - информационно-вычислительное устройство.

Система радиационного контроля течи трубопровода ЯЭУ с водяным теплоносителем содержит, по крайней мере, три комплекса измерения активности анализируемой среды, установленных на каждом контролируемом участке трубопровода 1, устройство отбора и транспортировки анализируемой среды к датчику и информационно-вычислительное устройство 10.

Каждый комплекс измерения активности анализируемой среды включает датчик радиоактивного излучения 6, который избирательно-чувствителен к излучению азота-16.

Датчики радиоактивного излучения 6 расположены по всей длине трубопровода 1 на известных расстояниях.

Устройства отбора и транспортировки анализируемой среды выполнены в виде патрубков 5, проходящих через в теплоизоляцию 2 трубопровода 1. Одни торцы патрубков 5 выведены в подизоляционное пространство 4 трубопровода 1, а другие торцы патрубков 5 выведены к датчикам радиоактивного излучения 6.

Информационно-вычислительное устройство 10 снабжено техническими средствами программного определения местоположения и массового расхода течи по совокупным показаниям задействованных комплексов измерения активности азота-16.

В датчиках радиоактивного излучения 6 использован эффект Вавилова-Черенкова. Датчик радиоактивного излучения 6 имеет нижний порог регистрации бета-излучения, превышающий 6,13 МэВ.

В модуле обработки сигналов 8 заложена функция приема сигналов от датчика радиоактивного излучения 6 и выдачи на выходе оцифрованного сигнала, пропорционального активности азота-16.

Электрически соединяют выход датчика радиоактивного излучения 6 со входом модуля обработки сигналов 8, находящегося на удалении от датчика радиоактивного излучения 6.

Датчик радиоактивного излучения 6, модуль обработки сигналов 8 и кабельная линия связи 7 образуют измерительный канал системы.

Выходы измерительных каналов соединены информационными линями связи 9 с информационно-вычислительным устройством 10.

Система работает следующим образом. В качестве информативного физического признака течи трубопровода 1 в системе используется факт обнаружения в подизоляционном пространстве 4 контролируемого участка трубопровода 1 радиоактивного изотопа азота-16. Радиоактивный изотоп азота-16 образуется непосредственно в теплоносителе 3 при прохождении им активной зоны реактора при взаимодействии быстрых нейтронов с ядрами кислорода-16. Изотоп азота-16 путем бета-распада превращается обратно в кислород-16 с периодом полураспада 7,11 с. Особенностью излучения азота-16 является наличие в нем бета-частиц с очень высокой энергией, доходящей до 10,4 МэВ, что позволяет в системе использовать датчики, избирательно-чувствительные к излучению изотопа азота-16 на фоне интенсивного гамма-излучения трубопровода. При возникновении течи трубопровода перегретый пар, включающий радиоактивный азота-16, от места течи Хm распространяется в обе стороны подизоляционного пространства 4. При достижении парогазовым фронтом мест установки патрубков 5 (Х1, Х2 и Х3) часть парогазовой смеси под действием некоторого избыточного давления будет выходить из подизоляционного пространства 4 через патрубки 5 к датчикам радиоактивного излучения 6. В этих условиях бета-частицы азота-16 с энергией выше 6,13 МэВ, попадая в чувствительные объемы датчиков радиоактивного излучения 6, будут производить сигналы. Регистрация присутствия азота-16 в подизоляционном пространстве 4 принимается за факт обнаружения течи.

Местоположение и величина массового расхода течи определяется из того, что датчики радиоактивного излучения 6 находятся на различных и известных расстояниях от места течи Хm и моменты времени регистрации азота-16 тремя датчиками различаются и зависят от величины расхода течи. Моменты времени t1, t2, t3 регистрации фиксируются и используются в качестве входных данных для вычисления параметров течи - координаты места течи и величины течи. Так как характерные времена распространения парогазового фронта вдоль подизоляционного пространства соизмеримы с периодом полураспада, Т1/2=7,11, с азота-16, то измеренные временные параметры достижения уставок корректируются введением поправок, учитывающих распад активности азота-16 при его распространении от места течи до мест установок датчиков радиоактивного излучения 6. Уточненные временные параметры t 1 ' , t 2 '  и t 3 ' определяются по формулам

где t1<t2<t3.

Координата места течи ХT и величина течи Gm определяются соответственно по формулам 4, 5 и 6:

где G - массовый расход течи, кг/с; W ¯ - средняя скорость распространения парогазового фронта вдоль подизоляционного пространства, м/с; t 1 ' , t 2 '  и t 3 ' - откорректированные времена достижения соответствующими измерительными каналами показаний, превышающих величину уставки, с; S - площадь сечения подизоляционного пространства, м2; ν - удельный объем пара при температуре подизоляционного пространства и атмосферном давлении, кг/м3.

Таким образом, использование в системе трех комплексов регистрации активности азота-16, расположенных на трубопроводе 1 на известных расстояниях, позволяет использовать время-пролетный метод определения местоположения и массового расхода течи, позволяющий удовлетворить современные требования, предъявляемые к системам контроля течи, по точности определения массового расхода течи, равной ±50%, и точности определения местоположения течи, равной ±2 м от длины контролируемого участка трубопровода 1.

Техническая реализуемость предложенной системы подтверждается положительными результатами выполненных расчетов и экспериментов.

Изобретение промышленно применимо, оно может быть использовано в ЯЭУ с водяным теплоносителем для контроля течи трубопровода.

Похожие патенты RU2584134C1

название год авторы номер документа
СПОСОБ ПРОВЕРКИ РАБОТОСПОСОБНОСТИ СИСТЕМЫ КОНТРОЛЯ ТЕЧИ ТРУБОПРОВОДА 2014
  • Дворников Павел Александрович
  • Ковтун Сергей Николаевич
  • Полионов Виктор Петрович
  • Шутов Павел Семёнович
  • Титаренко Николай Николаевич
RU2583893C1
СИСТЕМА ВЛАЖНОСТНОГО КОНТРОЛЯ ТЕЧИ ТРУБОПРОВОДА АЭС 2004
  • Морозов Славий Алексеевич
  • Полионов Виктор Петрович
  • Портяной Анатолий Григорьевич
  • Молявкин Алексей Николаевич
RU2271045C1
СПОСОБ ПРЕДАВАРИЙНОГО, АВАРИЙНОГО И ПОСТАВАРИЙНОГО КОНТРОЛЯ ИСТОЧНИКОВ РАДИАЦИОННОЙ, ХИМИЧЕСКОЙ И ВЗРЫВОПОЖАРНОЙ ОПАСНОСТИ В ГЕРМЕТИЧНЫХ ОБИТАЕМЫХ ОБЪЕКТАХ, ПРЕИМУЩЕСТВЕННО ПОДВОДНЫХ ЛОДКАХ, И КОМПЛЕКСНАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Петров Василий Александрович
  • Абакумов Валентин Павлович
  • Жабрунов Валентин Иванович
  • Михайленко Вадим Сергеевич
  • Капустин Игорь Владимирович
  • Кротов Игорь Викторович
  • Прасолин Алексей Прокопович
  • Семенов Дмитрий Олегович
  • Бударин Сергей Николаевич
RU2596063C1
СПОСОБ И СИСТЕМА ПОЛУЧЕНИЯ ДАННЫХ ПРИДОННОЙ РАДИОАКТИВНОСТИ В ГЛУБОКОВОДНЫХ АКВАТОРИЯХ 2020
  • Елохин Александр Прокопьевич
  • Улин Сергей Евгеньевич
RU2739136C1
ПАРОГЕНЕРАТОР ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ С ВОДО-ВОДЯНЫМ ТЕПЛОНОСИТЕЛЕМ 1965
  • Антонов В.Л.
  • Жернов В.С.
  • Киселев Б.Л.
  • Матвеев В.В.
  • Скаткин В.М.
SU224703A1
Способ определения объемной активности радионуклидов продуктов деления и активированных продуктов коррозии в водном теплоносителе первого контура ЯЭУ 2020
  • Орлов Сергей Николаевич
  • Кирпиков Денис Александрович
  • Зверев Александр Анатольевич
  • Фоменков Роман Викторович
  • Амосова Ольга Анатольевна
  • Мысик Сергей Григорьевич
RU2753380C1
Система влажностного контроля течи трубопровода АЭС 2019
  • Белоглазов Андрей Витальевич
  • Бударин Алексей Александрович
  • Дворников Павел Александрович
  • Ковтун Сергей Николаевич
  • Кудряев Андрей Алексеевич
  • Молявкин Алексей Николаевич
  • Шутов Сергей Семенович
  • Замиусский Владимир Николаевич
  • Савинов Андрей Адольфович
  • Шутов Павел Семенович
RU2716281C1
Система контроля течи теплообменника системы пассивного отвода тепла влажностным методом 2019
  • Белоглазов Андрей Витальевич
  • Бударин Алексей Александрович
  • Дворников Павел Александрович
  • Ковтун Сергей Николаевич
  • Кудряев Андрей Алексеевич
  • Молявкин Алексей Николаевич
  • Шутов Сергей Семенович
  • Замиусский Владимир Николаевич
  • Савинов Андрей Адольфович
  • Шутов Павел Семенович
RU2713918C1
Способ отбора и разбавления пробы жидкой радиоактивной среды и устройство для его осуществления 2019
  • Вилков Николай Яковлевич
  • Мирошниченко Игорь Вадимович
  • Кирпиков Денис Александрович
  • Прохоркин Сергей Владимирович
  • Чертков Александр Александрович
  • Маликов Антон Тимофеевич
  • Саранча Олег Николаевич
RU2699141C1
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ ПАРОГЕНЕРАТОРА ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ 2001
  • Бредихин В.Я.
  • Раков В.Т.
RU2191437C1

Иллюстрации к изобретению RU 2 584 134 C1

Реферат патента 2016 года СИСТЕМА РАДИАЦИОННОГО КОНТРОЛЯ ТЕЧИ ТРУБОПРОВОДА ЯЭУ С ВОДЯНЫМ ТЕПЛОНОСИТЕЛЕМ

Изобретение относится к контролю ЯЭУ с водяным теплоносителем. Система содержит комплекс измерения активности анализируемой среды, включающий датчик радиоактивного излучения (6) и устройство отбора и транспортировки анализируемой среды к датчикам радиоактивного излучения (6), и информационно-вычислительное устройство (10). На каждом контролируемом участке трубопровода (1) дополнительно установлены, по крайней мере, два комплекса измерения активности среды, включающие датчики радиоактивного излучения (6), которые избирательно-чувствительны к излучению азота-16. Датчики радиоактивного излучения (6) расположены по всей длине трубопровода (1) на известных расстояниях. Устройства отбора и транспортировки анализируемой среды выполнены в виде патрубков (5), проходящих через в теплоизоляцию (2) трубопровода (1). Одни торцы патрубков (5) выведены в подизоляционное пространство (4) трубопровода (1), а другие торцы патрубков (5) выведены к датчикам радиоактивного излучения (6). Определение местоположения и массового расхода течи проводят по совокупным показаниям задействованных комплексов измерения активности азота-16. Технический результат - повышение точности определения местоположения и массового расхода течи. 1 ил.

Формула изобретения RU 2 584 134 C1

Система радиационного контроля течи трубопровода ЯЭУ с водяным теплоносителем, содержащая комплекс измерения активности анализируемой среды, включающий датчик радиоактивного излучения и устройство отбора и транспортировки анализируемой среды к датчику, и информационно-вычислительное устройство, отличающаяся тем, что на каждом контролируемом участке трубопровода дополнительно установлено, по крайней мере, два комплекса измерения активности анализируемой среды, включающие датчики радиоактивного излучения, которые избирательно-чувствительны к излучению азота-16, датчики радиоактивного излучения расположены по всей длине трубопровода на известных расстояниях, устройства отбора и транспортировки анализируемой среды выполнены в виде патрубков, проходящих через в теплоизоляцию трубопровода, одни торцы патрубков выведены в подизоляционное пространство трубопровода, а другие торцы патрубков выведены к датчикам радиоактивного излучения, информационно-вычислительное устройство снабжено техническими средствами программного определения местоположения и массового расхода течи по совокупным показаниям задействованных комплексов измерения активности азота-16.

Документы, цитированные в отчете о поиске Патент 2016 года RU2584134C1

JP2008096345 A, 24.04.2008
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ЗА РАСХОДОМ ТЕПЛОНОСИТЕЛЯ В ЯДЕРНОМ РЕАКТОРЕ 1995
  • Русинов В.Ф.
  • Борисов В.Ф.
RU2100855C1
Автоматический регулятор нагрузки электродуговой печи 1958
  • Зайцев М.Г.
  • Казанский Л.А.
  • Куратов В.М.
SU120276A1
Способ автоматической электродуговой сварки 1948
  • Волошкевич Г.З.
SU82915A1
НАГРЕВАТЕЛЬНОЕ УСТРОЙСТВО 1997
  • Марков Виктор Павлович
  • Светцов Михаил Федорович
  • Соловьев Борис Иванович
  • Шапкин Николай Сергеевич
  • Воротилин Александр Васильевич
  • Долгополов Владимир Яч
RU2096695C1

RU 2 584 134 C1

Авторы

Дворников Павел Александрович

Ковтун Сергей Николаевич

Полионов Виктор Петрович

Хрячков Виталий Алексеевич

Титаренко Николай Николаевич

Даты

2016-05-20Публикация

2014-12-30Подача