Система влажностного контроля течи трубопровода АЭС Российский патент 2020 года по МПК G21C17/00 F17D5/02 G01M3/04 

Описание патента на изобретение RU2716281C1

Изобретение относится к области контроля герметичности оборудования атомных электрических станций (АЭС) и может быть использовано для обнаружения, локализации и оценки величины течи из трубопроводов водо-водяных энергетических реакторов (ВВЭР).

Из уровня техники известна влажностная система контроля течи трубопроводов и оборудования АЭС с PWR, разработанная фирмой MGP Instruments Франция (Nuclear Engineering International October 1993, pp 44-45, ДОР №1354, ФЭИ, июнь 1994, Обнинск). Система состоит из каналов проботбора воздуха из гермооболочки АЭС, гидрометрических ячеек, измеряющих точки росы проб воздуха. Контроль герметичности оборудования осуществляется по разности показаний различных гидрометрических ячеек, расположенных в системах проботбора, с данными ячеек, расположенных в воздухе гермооболочки.

Также известна, входящая в состав системы мониторинга и диагностики оборудования ALLY™ фирмы «Вестингауз» США, влажностная система контроля герметичности оборудования АЭС (Интегрирование систем мониторинга и диагностики АЭС, Рекламный проект фирмы «Вестингауз», Copyright Westing-house Electric Company, 2000, с. 8). Данная система близка по технической сущности к рассмотренной ранее влажностной системе фирмы MGP Instruments. Датчики точки росы данной влажностной системы также установлены на различных воздушных проботборных линиях. Значения температур в точке росы обрабатываются блоком сбора данных и переводятся в значения абсолютной влажности.

Общим недостатком указанных решений является то, что технические характеристики систем не отвечают требованиям контроля течи теплоносителя в рамках концепции «Течь перед разрушением», принятой в настоящее время для АЭС/ГОСТ Р 58328-2018 «Трубопроводы атомных станций. Концепция «Течь перед разрушением»».

Известна система регистрации течей теплоносителя 1-го контура реакторных установок атомной электростанции. Система включает блок контролируемых помещений с оборудованием первого контура реакторной установки, соединенный через воздуховоды вытяжной вентиляции с блоком каналов измерения влажности воздуха в контролируемых помещениях (см. патент RU №2268509, опубликован 20.01.2006).

Недостаток указанной системы - точность определения места течи теплоносителя не удовлетворяет требованиям, предъявляемым к современным системам контроля (±3 м), а система определяет место течи с точностью до размеров помещения.

Наиболее близким по технической сущности и выполняемым функциям к предложенному решению является система влажностного контроля течи трубопровода АЭС, содержащая устройство отбора и транспортировки воздуха из воздухопроницаемой теплоизоляции трубопровода под кожухом, и устройство измерения влажности воздуха. Устройство отбора и транспортировки воздуха из воздухопроницаемой теплоизоляции трубопровода состоит из патрубка, сочлененного нижним торцом с отверстием в кожухе воздухопроницаемой теплоизоляции трубопровода. Устройство измерения влажности содержит датчик влажности, линии связи и измерительно-вычислительный комплекс (см. патент RU 2271045, опубликован 27.02.2006).

Недостатком наиболее близкого решения является неспособность контролировать течь трубопровода с блочным невоздухопроницаемым типом теплоизоляции.

Технической проблемой, решаемой изобретением, является устранение указанных недостатков, а именно, создание системы контроля течи трубопровода АЭС по влажности воздуха, способной контролировать течь трубопровода, имеющего воздухонепроницаемую теплоизоляцию блочного типа.

Техническим результатом изобретения является повышение чувствительности обнаружения течи трубопровода, имеющего блочный тип теплоизоляции, расширение арсенала технических средств контроля течи трубопроводов АЭС по влажности воздуха.

Технический результат изобретения достигается благодаря тому, что система влажностного контроля течи трубопровода атомной электростанции (АЭС) содержит устройство отбора и транспортировки воздуха из контролируемого объема, включающее по меньшей мере один первый патрубок, устройство измерения влажности воздуха, включающее установленный в первом патрубке датчик влажности воздуха и соединенный с ним электрическими линиями связи измерительно-вычислительный комплекс, при этом в качестве контролируемого объема система использует объем, образованный зазором по всей длине трубопровода между трубопроводом и внутренней поверхностью блочной теплоизоляции, устройство отбора и транспортировки воздуха дополнительно включает по меньшей мере один второй патрубок, установленный в отверстии блочной теплоизоляции так, что один его торец соединен с одним торцом первого патрубка, а полость второго патрубка сообщена с контролируемым объемом трубопровода.

Кроме того, один торец второго патрубка может быть соединен с одним торцом первого патрубка посредством узла крепления.

Кроме того, второй патрубок может быть расположен соосно первому патрубку.

Изобретение поясняется чертежом, где показана схема системы с тремя устройствами отбора и транспортировки воздуха из контролируемого объема.

Предложенная система контроля течи трубопровода АЭС по влажности воздуха содержит: устройство отбора и транспортировки воздуха, включающее по меньшей мере один первый (основной) патрубок 1 и по меньшей мере один второй (дополнительный) патрубок 2; узел 3 соединения (сочленения) патрубков 1 и 2; устройство измерения влажности воздуха, включающее датчики 4 влажности воздуха, линии 5, 6, 7 связи и измерительно-вычислительный комплекс 8.

Предложенная система используется при блочной теплоизоляции 9 трубопровода 11, которая имеет внешний и внутренний кожух 10. При этом система отбирает и транспортирует воздух из контролируемого объема 12. Контролируемый объем 12 образован зазором (воздушной кольцевой полостью) по всей длине трубопровода 11 между внешней поверхностью трубопровода 11 и внутренним кожухом 10 теплоизоляции 9 (внутренней поверхностью теплоизоляции). Реакторная установка имеет гермооболочку 13.

Система устанавливается на контролируемом оборудовании следующим образом. Каждый первый (основной) патрубок 1 установлен на наружной поверхности блочной теплоизоляции 9 (на внешнем кожухе 10) так, что его ось направлена радиально относительно оси трубопровода 11. Каждый второй (дополнительный) патрубок 2 герметично установлен в отверстии, образованном в теплоизоляции 9 и его кожухе 10. Причем данное отверстие выполнено сквозным и его ось расположена радиально относительно оси трубопровода 11. Второй патрубок 2 установлен в отверстии теплоизоляции 9 так, что один (верхний) его торец (конец) соединен (сочленен) с одним (нижним) торцом (концом) первого патрубка 1 посредством узла крепления 3, а второй (нижний) его торец (конец) выведен в контролируемый объем 12 трубопровода 11 через отверстие в блочной теплоизоляции. Таким образом, полость каждого патрубка 2 сообщена с контролируемым объемом 12. Каждый второй патрубок 2 расположен, преимущественно, соосно соединенному с ним патрубку 1. При этом второй (нижний) торец патрубка 2 может быть расположен заподлицо с кожухом 10 (внутренним кожухом). Внутри каждого первого патрубка 1 установлен датчик 4. Количество патрубков 1 и 2 в предложенной системе может быть любым в зависимости от длины трубопровода 11, которые равномерно (или не равномерно) расположены вдоль всего трубопровода 11. Датчики 4 посредством линий 5, 6, 7 связи соединены с измерительно-вычислительным комплексом 8.

Система работает следующим образом. Система постоянно измеряет относительную влажность и температуру воздуха и вычисляет абсолютную влажность воздуха в местах установки датчиков 4 влажности. При отсутствии течи трубопровода 11 температура воздуха в местах установки датчиков 4 влажности превышает температуру воздуха в герметичной оболочке 13 АЭС и относительная влажность воздуха в этом случае низкая. При наличии течи трубопровода 11 образовавшийся пар, в силу избыточного давления, распространяется от места течи в обе стороны по контролируемому объему 12 трубопровода 11. Некоторая часть пара через патрубки 1 и 2 выходит в гермооболочку 13 реакторной установки АЭС, что приводит к повышению влажности и температуры воздуха в патрубках 1 и 2 и росту показаний датчика 4 влажности. Измененные параметры воздуха в патрубках 1 фиксируются датчиками 4 влажности воздуха, сигналы с которых по линиям связи 5, 6, 7 поступают в измерительно-вычислительный комплекс 8. Поскольку, датчики 4 влажности находятся на различных расстояниях от места течи, то моменты времени увеличения показаний будут различными и зависящими от величины течи. Моменты времени достижения уставок по росту влажности в местах установки трех ближайших датчиков 4 влажности на контролируемом участке фиксируются и используются для вычисления координаты течи и ее величины.

Использование системой контролируемого объема 12, образованного зазором по всей длине трубопровода 11 между трубопроводом 11 и внутренним кожухом 10 теплоизоляции 9, позволяет контролировать течь трубопровода 11 с теплоизоляцией блочного типа и получить дополнительный эффект - повысить чувствительность системы к обнаружению течи. Увеличение чувствительности оценивается по соотношению толщины традиционной теплоизоляции матового типа (около 200 мм) к величине зазора, образующего контролируемый объем 12 трубопровода 11 с блочной конструкцией теплоизоляции (от 5 до 35 мм), и составляет примерно от 8 до 40 раз.

Техническая реализуемость предложения подтверждена расчетами и экспериментами.

Похожие патенты RU2716281C1

название год авторы номер документа
Система контроля течи теплообменника системы пассивного отвода тепла влажностным методом 2019
  • Белоглазов Андрей Витальевич
  • Бударин Алексей Александрович
  • Дворников Павел Александрович
  • Ковтун Сергей Николаевич
  • Кудряев Андрей Алексеевич
  • Молявкин Алексей Николаевич
  • Шутов Сергей Семенович
  • Замиусский Владимир Николаевич
  • Савинов Андрей Адольфович
  • Шутов Павел Семенович
RU2713918C1
Система контроля течи оборудования второго контура в помещениях водо-водяного энергетического реактора 2021
  • Белоглазов Андрей Витальевич
  • Бударин Алексей Александрович
  • Дворников Павел Александрович
  • Ковтун Сергей Николаевич
  • Кудряев Андрей Алексеевич
  • Молявкин Алексей Николаевич
  • Шутов Сергей Семенович
  • Замиусский Владимир Николаевич
  • Савинов Андрей Адольфович
  • Шутов Павел Семенович
RU2753422C1
СИСТЕМА ВЛАЖНОСТНОГО КОНТРОЛЯ ТЕЧИ ТРУБОПРОВОДА АЭС 2004
  • Морозов Славий Алексеевич
  • Полионов Виктор Петрович
  • Портяной Анатолий Григорьевич
  • Молявкин Алексей Николаевич
RU2271045C1
Система акустического контроля течи трубопровода АЭС 2019
  • Белоглазов Андрей Витальевич
  • Бударин Алексей Александрович
  • Дворников Павел Александрович
  • Ковтун Сергей Николаевич
  • Кудряев Андрей Алексеевич
  • Молявкин Алексей Николаевич
  • Шутов Сергей Семенович
  • Замиусский Владимир Николаевич
  • Савинов Андрей Адольфович
  • Шутов Павел Семенович
RU2709474C1
Канал измерительный акустический 2021
  • Дворников Павел Александрович
  • Ковтун Сергей Николаевич
  • Кудряев Андрей Алексеевич
  • Бударин Алексей Александрович
  • Молявкин Алексей Николаевич
  • Шутов Павел Семенович
  • Шутов Сергей Семенович
  • Чичков Александр Генадьевич
  • Мильшин Валерий Иванович
  • Ознобишина Мария Дмитриевна
  • Замиусский Владимир Николаевич
  • Савинов Андрей Адольфович
RU2760604C1
Система контроля течи теплообменника системы пассивного отвода тепла акустическим методом 2019
  • Белоглазов Андрей Витальевич
  • Бударин Алексей Александрович
  • Дворников Павел Александрович
  • Ковтун Сергей Николаевич
  • Кудряев Андрей Алексеевич
  • Молявкин Алексей Николаевич
  • Шутов Сергей Семенович
  • Замиусский Владимир Николаевич
  • Савинов Андрей Адольфович
  • Шутов Павел Семенович
RU2722684C1
Канал измерительный влажностный 2021
  • Дворников Павел Александрович
  • Ковтун Сергей Николаевич
  • Кудряев Андрей Алексеевич
  • Бударин Алексей Александрович
  • Молявкин Алексей Николаевич
  • Шутов Павел Семенович
  • Шутов Сергей Семенович
  • Чичков Александр Геннадьевич
  • Мильшин Валерий Иванович
  • Ознобишина Мария Дмитриевна
  • Замиусский Владимир Николаевич
  • Савинов Андрей Адольфович
RU2756850C1
Система контроля концентрации водорода и кислорода в газовых средах 2023
  • Дворников Павел Александрович
  • Ковтун Сергей Николаевич
  • Кудряев Андрей Алексеевич
  • Бударин Алексей Александрович
  • Молявкин Алексей Николаевич
  • Шутов Павел Семенович
  • Шутов Сергей Семенович
  • Мильшин Валерий Иванович
  • Лукьянов Дмитрий Александрович
  • Замиусский Владимир Николаевич
  • Кузин Алексей Станиславович
RU2802540C1
УСТРОЙСТВО ДЛЯ ВЛАЖНОСТНОГО КОНТРОЛЯ ТЕЧИ ТРУБОПРОВОДА С ВОЗДУХОПРОНИЦАЕМОЙ ТЕПЛОИЗОЛЯЦИЕЙ ПОД КОЖУХОМ 2017
  • Андреев Борис Сергеевич
  • Матвеев Алексей Леонидович
  • Мишенин Алексей Юрьевич
  • Овчинников Владимир Александрович
  • Тонконог Алексей Валентинович
RU2651120C1
СИСТЕМА РАДИАЦИОННОГО КОНТРОЛЯ ТЕЧИ ТРУБОПРОВОДА ЯЭУ С ВОДЯНЫМ ТЕПЛОНОСИТЕЛЕМ 2014
  • Дворников Павел Александрович
  • Ковтун Сергей Николаевич
  • Полионов Виктор Петрович
  • Хрячков Виталий Алексеевич
  • Титаренко Николай Николаевич
RU2584134C1

Иллюстрации к изобретению RU 2 716 281 C1

Реферат патента 2020 года Система влажностного контроля течи трубопровода АЭС

Изобретение относится к области контроля герметичности оборудования атомных электрических станций (АЭС) и может быть использовано для обнаружения, локализации и оценки величины течи из трубопроводов водо-водяных энергетических реакторов. Система влажностного контроля течи трубопровода атомной электростанции содержит устройство отбора и транспортировки воздуха из контролируемого объема, включающее по меньшей мере один первый патрубок, устройство измерения влажности воздуха, включающее установленный в первом патрубке датчик влажности воздуха и соединенный с ним электрическими линиями связи измерительно-вычислительный комплекс. В качестве контролируемого объема система использует объем, образованный зазором по всей длине трубопровода между трубопроводом и внутренним кожухом блочной теплоизоляции. Устройство отбора и транспортировки воздуха дополнительно включает по меньшей мере один второй патрубок, установленный в отверстии блочной теплоизоляции так, что один его торец соединен с одним торцом первого патрубка, а полость второго патрубка сообщена с контролируемым объемом трубопровода. Изобретение позволяет повысить чувствительность обнаружения течи трубопровода, имеющего блочный тип теплоизоляции. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 716 281 C1

1. Система влажностного контроля течи трубопровода атомной электростанции (АЭС), содержащая устройство отбора и транспортировки воздуха из контролируемого объема, включающее по меньшей мере один первый патрубок, устройство измерения влажности воздуха, включающее установленный в первом патрубке датчик влажности воздуха и соединенный с ним электрическими линиями связи измерительно-вычислительный комплекс, отличающаяся тем, что в качестве контролируемого объема система использует объем, образованный зазором по всей длине трубопровода между трубопроводом и внутренней поверхностью блочной теплоизоляции, устройство отбора и транспортировки воздуха дополнительно включает по меньшей мере один второй патрубок, установленный в отверстии блочной теплоизоляции так, что один его торец соединен с одним торцом первого патрубка, а полость второго патрубка сообщена с контролируемым объемом трубопровода.

2. Система по п. 1, отличающаяся тем, что один торец второго патрубка соединен с одним торцом первого патрубка посредством узла крепления.

3. Система по п. 1, отличающаяся тем, что второй патрубок расположен соосно первому патрубку.

Документы, цитированные в отчете о поиске Патент 2020 года RU2716281C1

СИСТЕМА ВЛАЖНОСТНОГО КОНТРОЛЯ ТЕЧИ ТРУБОПРОВОДА АЭС 2004
  • Морозов Славий Алексеевич
  • Полионов Виктор Петрович
  • Портяной Анатолий Григорьевич
  • Молявкин Алексей Николаевич
RU2271045C1
СПОСОБ ПРОВЕРКИ РАБОТОСПОСОБНОСТИ СИСТЕМЫ КОНТРОЛЯ ТЕЧИ ТРУБОПРОВОДА 2014
  • Дворников Павел Александрович
  • Ковтун Сергей Николаевич
  • Полионов Виктор Петрович
  • Шутов Павел Семёнович
  • Титаренко Николай Николаевич
RU2583893C1
RU 2014153974 A, 10.12.2016
ТЕСТОМЕСИЛЬНАЯ МАШИНА 1925
  • Тамашин П.А.
SU6322A1
CN 0102420021 B, 26.11.2014.

RU 2 716 281 C1

Авторы

Белоглазов Андрей Витальевич

Бударин Алексей Александрович

Дворников Павел Александрович

Ковтун Сергей Николаевич

Кудряев Андрей Алексеевич

Молявкин Алексей Николаевич

Шутов Сергей Семенович

Замиусский Владимир Николаевич

Савинов Андрей Адольфович

Шутов Павел Семенович

Даты

2020-03-11Публикация

2019-09-04Подача