Изобретение относится к диагностике технического состояния сложных систем контроля технологических процессов и может быть использовано для проверки работоспособности системы контроля течи трубопровода, в частности трубопроводов ядерных энергетических установок с водяным теплоносителем.
Известно техническое решение, рассмотренное в патенте РФ на изобретение №2184369 «Устройство для измерения влажности воздуха», из описания которого известен способ проверки его работоспособности. Сущность способа заключается в дистанционном отключении чувствительных к измеряемым физическим величинам элементов первичных преобразователей от входов пространственно удаленных усилителей-преобразователей, подключении к ним эталонных имитаторов измеряемых физических величин и сравнении показаний измерительных каналов с подключенными эталонными имитаторами с параметрами самих эталонных имитаторов.
Недостаток способа заключается в том, что он не контролирует технического состояния чувствительных элементов первичного преобразователя, который эксплуатируется в условиях воздействия деструктивных факторов.
Наиболее близким по технической сущности к заявляемому техническому решению является способ, раскрытый в препринте Морозов С.А., Ковтун С.Н., Дврников П.А. и др. Система влажностного контроля течи (СКТВ) водяного теплоносителя. Препринт ФЭИ-3080. Обнинск, 2006, 20 с.
Сущность способа заключается в периодическом дистанционном отключении от входов усилителей-преобразователей каналов измерения относительной влажности и температуры воздуха, чувствительных к измеряемым физическим величинам элементов, емкостного сенсора относительной влажности воздуха и резистивного сенсора температуры воздуха, и дистанционном подключении вместо них эталонных имитаторов измеряемых физических величин, эталонного конденсатора и эталонного резистора, регистрации показаний измерительных каналов с подключенными эталонными имитаторами и сравнении воспроизведенных параметров эталонных имитаторов с параметрами самих эталонных имитаторов. Описанный способ позволяет контролировать линии связи между первичными преобразователями и пространственно удаленными усилителями-преобразователями измерительных каналов и сохранность характеристик усилителей-преобразователей в точке контроля, заданной параметрами имитаторов физических величин.
Недостатком известного технического решения является отсутствие комплексного контроля со стороны системы за работоспособностью чувствительных элементов первичных преобразователей и электрическими характеристиками измерительных каналов, а также отсутствие комплексной проверки алгоритма определения местоположения и массового расхода течи по показаниям задействованных на контролируемом участке трубопровода первичных преобразователей.
Задачей изобретения является устранение указанных недостатков, а именно обеспечение комплексного контроля со стороны системы за работоспособностью чувствительных элементов первичных преобразователей и электрическими характеристиками измерительных каналов, а также обеспечение комплексной проверки алгоритма определения местоположения и массового расхода течи.
Технический результат - расширение функциональных возможностей способа проверки работоспособности системы контроля течи трубопровода.
Для исключения указанных недостатков в способе проверки работоспособности системы контроля течи трубопровода, включающем воспроизведение системой параметров эталонного имитатора измеряемых системой физических величин, сравнение воспроизведенных параметров с заданными параметрами эталонного имитатора и выработку заключения о работоспособности системы, предлагается:
- перед каждой проверкой работоспособности системы задавать параметры эталонного имитатора течи в виде величин массового расхода и местоположения течи;
- рассчитывать временной и температурный режимы теплового воздействия на каждый первичный преобразователь температуры системы при течи с заданными эталонным имитатором массового расхода и местоположения течи;
- проводить тепловое воздействие на каждый первичный преобразователь температуры с соблюдением рассчитанных временного и температурного режимов и зарегистрировать воспроизведенные системой параметры эталонного имитатора;
- сравнить указанные параметры имитатора;
- признать работоспособность системы при условии совпадения воспроизведенных системой параметров эталонного имитатора течи в пределах допустимых нормированных погрешностей.
Сущность способа состоит в следующем.
Способ проверки работоспособности системы контроля течи трубопровода включает воспроизведение системой параметров эталонного имитатора измеряемых системой физических величин, сравнение воспроизведенных параметров с заданными параметрами эталонного имитатора и выработку заключения о работоспособности системы.
Параметры эталонного имитатора течи задают перед каждой проверкой работоспособности системы в виде величин массового расхода и местоположения течи.
Рассчитывают временной и температурный режимы теплового воздействия на каждый первичный преобразователь температуры системы при течи с заданными эталонным имитатором параметрами.
Проводят тепловое воздействие на каждый первичный преобразователь температуры с соблюдением рассчитанных временного и температурного режимов.
Регистрируют воспроизведенные системой параметры эталонного имитатора, сравнивают их с заданными параметрами эталонного имитатора течи и признают систему работоспособной при условии совпадения указанных параметров в пределах допустимых нормированных погрешностей.
Способ предназначен для проверки системы контроля течи трубопровода, в которой в качестве физического признака течи используется эффект повышения температуры, регистрируемый тремя термоэлектрическими преобразователями (ТЭП), установленными на известных расстояниях (X1, Х2 и Х3) вдоль длины контролируемого участка трубопровода. ТЭП установлены в патрубках, нижние концы которых сочленены с пространством трубопровода, образованного зазором между внешним диаметром трубопровода и внутренним диаметром теплоизоляции. Система постоянно измеряет температуру воздуха в местах установки ТЭП. При наличии течи трубопровода образовавшийся пар в силу избыточного давления распространяется равномерно от места течи (XT) в обе стороны по подизоляционному пространству трубопровода, при этом некоторая часть пара через патрубки выходит в окружающую среду, что приводит к повышению температуры воздуха в патрубках, которая регистрируется ТЭП. Поскольку ТЭП находятся на различных расстояниях от места течи, то моменты времени увеличения показаний соответствующих измерительных каналов будут различными и зависимыми от величины (расхода) течи. Моменты времени достижения измерительными каналами уставок по температуре фиксируются и используются в качестве входных данных в алгоритме вычисления параметров течи - расход и координаты места течи.
Для проверки работоспособности описанной системы необходимо выполнить следующие действия:
1. Задать параметры эталонной течи: эталонную величину расхода течи Gэт и эталонную координату места течи Хэт, величины которых находятся внутри диапазонов измерения системой расхода и координаты места течи.
2. По заданным параметрам эталонной течи рассчитать временной и температурный режимы теплового воздействия на все ТЭП, для чего определить:
- среднюю скорость
где ν - удельный объем перегретого газа при температуре подизоляционного пространства; S - площадь сечения подизоляционного пространства трубопровода;
- времена t1, t2, t3 прохождения ПГФ расстояний от заданного эталонного места течи (Хэт) до мест установок первичных преобразователей (Х1, Х2 и Х3), что равносильно временам от момента начала течи до моментов теплового воздействия на первичные преобразователи, по формулам:
если
или по формулам:
если
- время искусственного теплового воздействия на термоэлектроды ТЭП (tи.т.в.) по формуле
величину тока нагрева термоэлектродов ТЭП по формуле
где ΔT - величина уставки по температуре, определяется как превышение температуры над фоном; k - коэффициент пропорциональности между скоростью увеличения показаний температуры измерительными каналами и током нагрева термоэлектродов ТЭП.
3. Зафиксировать показания температур Тф1, Тф2 и Тф3 измерительными каналами при отсутствии течи (фоновые температуры).
4. Одновременно отключить все ТЭП от входов усилителей-преобразователей измерительных каналов и через времена t1, t2, t3 подключить к источнику тока (источнику теплового воздействия) соответствующие ТЭП.
5. По истечении времени искусственного теплового воздействия на ТЭП (tи.т.в) одновременно отключить их от источника тока и подключить ко входам усилителей-преобразователей измерительных каналов, зафиксировать показания температур, величины которых описываются формулами:
где i=1,2,3.
6. Рассчитать моменты времени
7. Определить воспроизводимые системой параметры эталонной течи
при
при
8. Сравнить воспроизведенные параметры течи X' и G' с заданными эталонными параметрами и проверить выполнение условий
где ΔG и ΔХ - пределы допускаемых нормированных абсолютных погрешностей соответственно расхода течи и координаты места течи.
9. Принять, что при выполнении условий (1) система с установленными на контролируемом участке ТЭП работоспособна.
Для проверки системы контроля течи трубопроводов ядерных энергетических установок с водяным теплоносителем в качестве допустимых нормированных погрешностей в выражении (1) использовать рекомендованные нормативными документами пределы определения расхода и координаты места течи, равные соответственно ±50%, ±2 м на длине контролируемого участка трубопровода.
Таким образом, способ проверки работоспособности системы контроля течи трубопровода вовлекает в сферу контроля чувствительные элементы первичных преобразователей и алгоритма работы системы по определению расхода и координаты места течи, а также дает возможность контролировать работоспособность системы во всех диапазонах контролируемых его расходов и координат мест течи путем задания соответствующих параметров эталонной течи при проведении периодических проверок ее работоспособности.
Покажем работоспособность способа на конкретном числовом примере.
В таблице 1 приведены исходные данные, необходимые системе для реализации алгоритма определения расхода и координаты места течи и проведения проверки своей работоспособности.
В таблице 2 приведены промежуточные результаты расчетов для проверки работоспособности предложенного способа.
Анализ полученных результатов расчета поэтапного выполнения способа показывает, что технические возможности системы обеспечивают как временные, так и температурные параметры искусственного теплового воздействия на первичные преобразователи во всем диапазоне измерений, а совпадение заданных параметров эталонной течи с воспроизведенными параметрами демонстрируют работоспособность способа.
Для технической реализации способа необходимо технические средства системы дополнить источником теплового воздействия на ТЭП в виде источника тока с возможностью программного управления величиной тока и программно-управляемым коммутатором, необходимым для дистанционного отключения ТЭП от входов измерительных каналов и подключения их к источнику теплового воздействия в заданном временном режиме.
Промышленная применимость способа обосновывается принципиальной возможностью использования способа в системах контроля течи по температуре, в частности трубопроводов первого контура ядерных энергетических установок с водяным теплоносителем.
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА РАДИАЦИОННОГО КОНТРОЛЯ ТЕЧИ ТРУБОПРОВОДА ЯЭУ С ВОДЯНЫМ ТЕПЛОНОСИТЕЛЕМ | 2014 |
|
RU2584134C1 |
Канал измерительный влажностный | 2021 |
|
RU2756850C1 |
СПОСОБ КОНТРОЛЯ КАЧЕСТВА МОНТАЖА ВНУТРИРЕАКТОРНЫХ ТЕРМОДАТЧИКОВ | 2014 |
|
RU2565249C1 |
СПОСОБ ГРАДУИРОВКИ И ПРОВЕРКИ СРЕДСТВ КОСВЕННЫХ ИЗМЕРЕНИЙ И ЭТАЛОН ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1994 |
|
RU2095761C1 |
СПОСОБ УЧЕТА ТЕПЛОВОЙ ЭНЕРГИИ И КОЛИЧЕСТВА ТЕПЛОНОСИТЕЛЯ В ОТКРЫТЫХ ВОДЯНЫХ СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2310820C1 |
АКУСТИЧЕСКИЙ ДЕТЕКТОР ТЕКУЧЕЙ СРЕДЫ И СПОСОБ ЕГО ПРИМЕНЕНИЯ | 2014 |
|
RU2688883C2 |
Способ комплексной оптимизации параметров энергоблока | 2021 |
|
RU2783863C1 |
Система и способ автоматического управления и контроля котлоагрегата, работающего на газообразном топливе | 2020 |
|
RU2745181C1 |
СПОСОБ ИМИТАЦИОННОЙ КАЛИБРОВКИ ИЗМЕРИТЕЛЬНЫХ КАНАЛОВ СИСТЕМЫ УПРАВЛЕНИЯ РАЗГРУЗОЧНО-ЗАГРУЗОЧНОЙ МАШИНЫ ЯДЕРНОГО РЕАКТОРА | 2011 |
|
RU2479875C1 |
Контрольно-проверочный комплекс систем прицельно-навигационного пилотажного комплекса самолёта | 2022 |
|
RU2799116C1 |
Изобретение относится к диагностике технического состояния систем контроля технологических процессов. Предложен способ проверки работоспособности системы контроля течи трубопровода, который включает воспроизведение системой параметров эталонного имитатора измеряемых системой физических величин, сравнение воспроизведенных параметров с заданными параметрами эталонного имитатора и выработку заключения о работоспособности системы. Параметры эталонного имитатора течи задают перед каждой проверкой работоспособности системы в виде величин массового расхода и местоположения течи. Рассчитывают временной и температурный режимы теплового воздействия на каждый первичный преобразователь температуры системы при течи с заданными эталонным имитатором параметрами. Проводят тепловое воздействие на каждый первичный преобразователь температуры с соблюдением рассчитанных временного и температурного режимов. Регистрируют воспроизведенные системой параметры эталонного имитатора. Сравнивают их с заданными параметрами эталонного имитатора течи и признают систему работоспособной при условии совпадения указанных параметров в пределах допустимых нормированных погрешностей. Технический результат- повышение достоверности и точности диагностики. 2 табл.
Способ проверки работоспособности системы контроля течи трубопровода, включающий воспроизведение системой параметров эталонного имитатора измеряемых системой физических величин, сравнение воспроизведенных параметров с заданными параметрами эталонного имитатора и выработку заключения о работоспособности системы, отличающийся тем, что параметры эталонного имитатора течи задают перед каждой проверкой работоспособности системы в виде величин массового расхода и местоположения течи, рассчитывают временной и температурный режимы теплового воздействия на каждый первичный преобразователь температуры системы при течи с заданными эталонным имитатором параметрами, проводят тепловое воздействие на каждый первичный преобразователь температуры с соблюдением рассчитанных временного и температурного режимов, регистрируют воспроизведенные системой параметры эталонного имитатора, сравнивают их с заданными параметрами эталонного имитатора течи и признают систему работоспособной при условии совпадения указанных параметров в пределах допустимых нормированных погрешностей.
Авторы
Даты
2016-05-10—Публикация
2014-12-30—Подача