СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МЕТАЛЛА В КОЛЛОИДНОМ РАСТВОРЕ МЕТАЛЛА В ВОДЕ Российский патент 2016 года по МПК G01N21/84 B01J13/00 B22F9/14 B82B3/00 

Описание патента на изобретение RU2584199C2

Изобретение относится к способам диагностики коллоидных растворов металлов в воде, в частности серебра, золота, железа в виде гидроксида, алюминия, и предназначено для использования в различных областях техники, биологии и медицины.

Известен способ диагностики коллоидных растворов металлов в воде, включающий определение концентрации металла в растворе (см. напр. патент РФ 2422377, МПК C02F 1/50, опубл. 2011).

Недостатком известного способа является невозможность определения концентрации металла в атомарном состоянии в растворе, которая в основном и определяет биологическую активность коллоидного раствора.

В основу изобретения поставлена задача усовершенствования способа диагностики коллоидных растворов металлов (серебро, золото, железо в виде гидроксида, алюминий) в воде, определяя концентрацию металла в атомарном состоянии, для повышения биологической активности коллоидных растворов.

Поставленная задача решается тем, что в способе диагностики коллоидных растворов металлов в воде, включающем определение концентрации металла в растворе, определение концентрации металла в растворе производят путем определения показателя экстинкции раствора в спектральном интервале с длиной волны 195-205 нм.

Поскольку определение концентрации металла в растворе производят путем определения показателя экстинкции раствора в спектральном интервале с длиной волны 195-205 нм, обеспечивается определение концентрации металла в атомарном состоянии в растворе и повышение биологической активности коллоидных растворов.

На графическом материале показана блок-схема установки для производства коллоидных растворов металлов.

Установка для производства коллоидных растворов металлов включает камеру 1 с рабочей жидкостью, таймер-программатор 2, задатчик зазора 3, блок управления 4 шаговым двигателем М2, реле реверса 5, блок высокого напряжения 6, контактное реле 7, контакт 8 подачи сигнала на контактное реле 7, датчик расхода 9, датчик концентрации 10, выключатель 11 датчика расхода 9, выключатель 12 датчика концентрации 10 и электроды 13 и 14. Электрод 13 связан с приводом его вращения M1.

Способ для серебра (аналогично золото, железо в виде гидроксида, алюминий) в воде осуществляют следующим образом.

Таймер-программатор 2 по заданной программе периодически включает вращение электрода 13 через привод M1 и подает сигналы на включение блока высокого напряжения 6 и прокачку жидкости между электродами 13 и 14. В процессе работы установки происходит увеличение зазора между электродами 13 и 14 примерно на 10 мкм за 5 минут. Следствием этого является уменьшение частоты следования разрядных импульсов и соответственно уменьшается скорость генерации наночастиц. Таймер-программатор 2 по истечении пяти минут подает сигнал на блок управления 4 шаговым двигателем М2 и происходит сближение электродов 13 и 14 до полного их касания. Формируется сигнал, переключающий шаговый двигатель М2 на реверс, и электроды раздвигаются на заданный зазор. Заданный зазор определяется и сигналом, поступающим от задатчика зазора 3 к блоку управления 4 шаговым двигателем М2. Электроды выставляются на заданный зазор и таймер-программатор 2 дает команду на продолжение технологического процесса производства коллоидного раствора.

Для увеличения точности регулирования скорости генерации коллоидного раствора и поддержания величины зазора между электродами 13 и 14 на одном уровне в установке задатчик зазора 3 может быть соединен с датчиком расхода 9 и/или датчиком концентрации 10, которые вмонтированы в линию выхода готового раствора. Для включения в работу датчика расхода 9 выключатель 11 находится во включенном состоянии. В этом случае при возникновении сверхдопустимого зазора между электродами 13 и 14 датчик расхода 9 фиксирует увеличение потока жидкости и выдает команду на регулировку зазора между электродами 13 и 14, подавая сигнал на задатчик зазора 3. После этого происходит регулировка зазора между электродами 13 и 14. Для работы в качестве регулятора датчика концентрации 10 он подключается к задатчику зазора 3 выключателем 12. При увеличении зазора между электродами 13 и 14 датчик концентрации 10 фиксирует изменение концентрации раствора между электродами 13 и 14 и аналогично датчику расхода 9 выдает команду на регулировку зазора между электродами 13 и 14, подавая сигнал на задатчик зазора 3.

Одновременно с протеканием технологического процесса получения коллоидного раствора металла в воде осуществляют и его диагностику, которая заключается в следующем. Проводят зондирующее излучение в диапазоне длин волн 200±1 нм. По измеренным значениям экстинкции раствора А определяют расчетным путем показатель экстинкции раствора К по формуле К=ln(1/1-A)/L, где L - толщина емкости в метрах, в которой находится коллоидный раствор металла. При достижении показателя экстинкции К значений, превышающих 0,75 м-1, что соответствует концентрации атомарной компоненты металла в растворе не менее 10-4 моль/л, установку выключают, завершая технологический процесс получения коллоидного раствора с достигнутой вышеуказанной концентрацией атомарной компоненты металла в растворе. При такой концентрации атомарной компоненты металла раствор, как показали опытно-экспериментальные исследования, обладает повышенной биологической активностью.

Примеры для биологически активных металлов, таких как золото, железо, алюминий, аналогичны.

Похожие патенты RU2584199C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ КОЛЛОИДНОГО РАСТВОРА СЕРЕБРА 2014
  • Ерастова Елена Ивановна
  • Остроухов Николай Николаевич
  • Тянгинский Александр Юрьевич
RU2584198C2
СПОСОБ ИЗГОТОВЛЕНИЯ КОЛЛОИДНОГО РАСТВОРА СЕРЕБРА 2014
  • Ерастова Елена Ивановна
  • Остроухов Николай Николаевич
  • Тянгинский Александр Юрьевич
RU2574268C1
СПОСОБ ПОЛУЧЕНИЯ ТОНКИХ ПЛЕНОК ИЗ КОЛЛОИДНЫХ РАСТВОРОВ НАНОЧАСТИЦ БЛАГОРОДНЫХ МЕТАЛЛОВ И ИХ СПЛАВОВ, ПОЛУЧЕННЫХ МЕТОДОМ ИМПУЛЬСНОЙ ЛАЗЕРНОЙ АБЛЯЦИИ ДЛЯ СПЕКТРОСКОПИИ УСИЛЕННОГО КОМБИНАЦИОННОГО РАССЕЯНИЯ 2022
  • Волокитина Анастасия Владимировна
  • Светличный Валерий Анатольевич
  • Лапин Иван Николаевич
RU2789995C1
Способ изготовления подложек для спектроскопии гигантского комбинационного рассеяния 2022
  • Баршутина Мария Николаевна
  • Новиков Сергей
  • Волков Валентин Сергеевич
  • Арсенин Алексей Владимирович
RU2797004C1
СПОСОБ ПОЛУЧЕНИЯ КОЛЛОИДНЫХ РАСТВОРОВ МЕТАЛЛОВ 2001
  • Крыжановский А.В.
RU2238140C2
ПЛАНАРНЫЙ ТВЕРДОФАЗНЫЙ ОПТИЧЕСКИЙ СЕНСОР ДЛЯ ОПРЕДЕЛЕНИЯ БЕЛКОВЫХ СОЕДИНЕНИЙ МЕТОДОМ СПЕКТРОСКОПИИ ГИГАНТСКОГО КОМБИНАЦИОННОГО РАССЕЯНИЯ И ЕГО ПРИМЕНЕНИЕ ДЛЯ ДЕТЕКТИРОВАНИЯ БЕЛКОВЫХ СОЕДИНЕНИЙ 2016
  • Веселова Ирина Анатольевна
  • Гудилин Евгений Алексеевич
  • Сергеева Елена Андреевна
  • Еремина Ольга Евгеньевна
  • Семенова Анна Александровна
  • Сидоров Александр Владимирович
  • Шеховцова Татьяна Николаевна
RU2659987C2
Способ получения наноразмерного диоксида титана с вариабельными оптическими свойствами, модифицированного металлическими плазмонными наночастицами 2021
  • Раффа Владислав Викторович
  • Блинов Андрей Владимирович
  • Гвозденко Алексей Алексеевич
  • Голик Алексей Борисович
  • Маглакелидзе Давид Гурамиевич
  • Блинова Анастасия Александровна
  • Яковенко Андрей Антонович
  • Леонтьев Павел Сергеевич
  • Филиппов Дионис Демокритович
RU2771768C1
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ МЕТАЛЛОВ В ЖИДКОЙ ФАЗЕ 2008
  • Шеляков Олег Владимирович
  • Иванов Михаил Николаевич
RU2364470C1
СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТОВ НАНОДИСПЕРСИЙ НУЛЬВАЛЕНТНЫХ МЕТАЛЛОВ С АНТИСЕПТИЧЕСКИМИ СВОЙСТВАМИ 2010
  • Кошелев Константин Константинович
  • Кошелева Ольга Константиновна
  • Свистунов Максим Геннадиевич
  • Паутов Валентин Павлович
RU2445951C1
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНЕСЦЕНТНОЙ СРЕДЫ С ЛАЗЕРНЫМ УПРАВЛЕНИЕМ 2021
  • Овчинников Олег Владимирович
  • Смирнов Михаил Сергеевич
  • Перепелица Алексей Сергеевич
  • Гревцева Ирина Геннадьевна
  • Звягин Андрей Ильич
  • Чевычелова Тамара Андреевна
  • Кондратенко Тамара Сергеевна
  • Дерепко Виолетта Николаевна
RU2783806C1

Иллюстрации к изобретению RU 2 584 199 C2

Реферат патента 2016 года СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МЕТАЛЛА В КОЛЛОИДНОМ РАСТВОРЕ МЕТАЛЛА В ВОДЕ

Изобретение может быть использовано в биологии и медицине. Определение концентрации металла в коллоидном растворе металла в воде проводят путем определения показателя экстинкции раствора в спектральном интервале с длиной волны 195-205 нм. Изобретение позволяет повысить биологическую активность коллоидных растворов металлов, таких как серебро, золото, железо, алюминий. 1 ил.

Формула изобретения RU 2 584 199 C2

Способ определения концентрации металла в коллоидном растворе металла в воде, включающий определение концентрации металла в растворе, отличающийся тем, что определение концентрации металла в растворе производят путем определения показателя экстинкции раствора в спектральном интервале с длиной волны 195-205 нм.

Документы, цитированные в отчете о поиске Патент 2016 года RU2584199C2

БИОЦИДНЫЙ КОНЦЕНТРАТ 2009
  • Голубев Виталий Николаевич
  • Коленков Иван Аркадьевич
  • Слепцов Владимир Владимирович
  • Тянгинский Александр Юрьевич
  • Церулёв Максим Владимирович
  • Шмидт Владимир Ильич
RU2422377C2
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ КОМПОНЕНТОВ РАСТВОРА ХИМИЧЕСКОГО МЕДНЕНИЯ 1991
  • Дрозд А.В.[Ua]
  • Перьков И.Г.[Ua]
  • Арцебашев Г.В.[Ua]
  • Владимирова И.П.[Ua]
  • Иванникова Н.Л.[Ua]
RU2028604C1
Способ фотометрического определения железа в растворе 1980
  • Филиппов Евгений Михайлович
  • Ионов Александр Николаевич
  • Голубев Андрей Рувимович
  • Сенин Евгений Васильевич
SU927755A1
US 20130252275 A1, 26.09.2013
ЕРШОВ Б.Г., Наночастицы металлов в водных растворах: электронные, оптические и каталитические свойства, Российский химический журнал, 2001, т
XLV, N 3, cc
Прибор для промывания газов 1922
  • Блаженнов И.В.
SU20A1

RU 2 584 199 C2

Авторы

Ерастова Елена Ивановна

Остроухов Николай Николаевич

Тянгинский Александр Юрьевич

Даты

2016-05-20Публикация

2014-09-10Подача