СПОСОБ ОПРЕДЕЛЕНИЯ КАРНОЗИНА В БИОЛОГИЧЕСКИХ МАТЕРИАЛАХ Российский патент 2016 года по МПК G01N33/52 G01N33/15 G01N30/04 

Описание патента на изобретение RU2585115C1

Изобретение относится к области медицины, а именно к экспериментальной фармакологии, и может быть использовано для количественного определения карнозина в тканях и физиологических жидкостях для решения задач экспериментальной и клинической фармакокинетики.

Природный карнозин экстрагируется из мышц крупного рогатого скота. Один из наиболее используемых способов химического синтеза карнозина - это конденсация при низкой температуре фталоил-β-аланилхлорида с L-гистидином в присутствии триэтиламина, что приводит к синтезу фталоил-β-аланилгистидина. При удалении фталоильной группировки гидразином образуется карнозин. В литературе описаны различные способы разделения и определения карнозина, в частности с использованием титрометрического метода, тонкослойной хроматографии и жидкостной хроматографии высокого давления, позволяющей определять следовые количества карнозина и его производных.

На сегодняшний день известен способ количественного определения карнозина путем прямого кислотного титрования 0,1 M раствором хлороводородной кислоты с последующим потенциометрическим определением точки эквивалентности (Фадеева Д.А., Халикова М.А., Новиков О.О. Применение прямой ацидометрии для количественного определения карнозина., Научные ведомости Белгородского государственного университета, Серия: Медицина. Фармация, 2010, вып. №12-2 (93), том №22, с. 98-100). Однако данный метод не адаптирован для работы с биологическим материалом.

Наиболее близким техническим решением является способ количественного определения карнозина путем масс-спектрометрии MALDI/TOF/MS, при этом получают водный раствор карнозина, который в количестве 0,5 µl наносят на мишень и после высыхания сверху капают каплю матрицы - α-цианокоричной кислоты. При регистрации масс-спектра наблюдается наиболее интенсивный пик молекулярного иона с зарядом m/z=227,489, что соответствует протонированной форме карнозина. Чувствительность методики составляет (0,221 пикомоль (2,21*1012 моль) (Писарев Д.И., Новиков О.О., Васильев Г.В., Селютин О.А. Опыт использования метода MALDI/TOF/MS в фармацевтическом анализе., Научные ведомости Белгородского государственного университета. Серия: Медицина. Фармация, 2012, вып. №10-2 (129), том 18, с. 1-11). Однако данный метод не учитывает влияние на эффективность ионизации компонентов биологического субстрата (плазма крови, ткань мозга и др.). Таким образом, данный метод также не адаптирован для работы с биоматериалами.

Технический результат заявленного нами способа заключается в создании высокоселективного и чувствительного хроматомасс-спектрометрического метода количественного определения карнозина в биологических субстратах, высокоселективность и чувствительность которого, в частности, обусловлена учетом влияния компонентов биологических материалов на эффективность ионизации. Надежность и точность количественного определения обеспечивается применением внутреннего стандарта L-аланил-карнозина. Все перечисленное делает данный метод удобным для изучения фармакокинетики карнозина в эксперименте и в клинике.

Технический результат достигается тем, что определение карнозина в биологических материалах осуществляют путем анализа вещества высокоселективным методом масс-спектрометрии с применением электроспрейной ионизации, при этом предварительно проводят депротеинизацию плазмы крови 10% водным раствором трихлоруксусной кислоты, затем к депротеинизированному образцу добавляют аликвоту раствора внутреннего стандарта L-аланил-карнозина, разделение продуктов экстракции проводят на обращенно-фазной хроматографической колонке 4,6×150 мм с температурой разделения 35°C и скоростью подачи элюента 0,7 мл/мин, при этом в качестве элюента применяют 10 мМ ацетат аммония, подкисленный ледяной уксусной кислотой до pH 3.7, и смесь ацетонитрила с 10 мМ ацетатом аммония в соотношении 90:10, взятыми в процентном соотношении 10:90 соответственно, детектирование карнозина проводят по четырем дочерним ионам с m/z 110.0, 156.1, 180.0, 210.1, образующимся в результате распада молекулярного иона карнозина с m/z 227.1, а его концентрацию рассчитывают по отношению площади хроматографического пика карнозина к площади пика внутреннего стандарта - L-аланил-карнозина.

Способ осуществляется следующим образом.

В качестве биологической матрицы используют плазму крови и гомогенат ткани головного мозга мышей. Извлечение карнозина осуществляли методом депротеинизации. К образцу плазмы крови или образцу гомогената ткани мозга (1:2, m:v, мозг : бидистиллят) объемом 100 мкл добавляют 10 мкл раствора внутреннего стандарта L-аланил-карнозина с концентрацией 200 мкг/мл. К полученной смеси приливают 400 мкл 10% водного раствора трихлоруксусной кислоты с целью преципитации протеинов плазмы. Образовавшуюся взвесь денатурированных белков осаждают на ультрацентрифуге со скоростью 13000 об/мин. Надосадочную жидкость осторожно декантируют и переносят в хроматографическую виалу, которую помещают в автосамплер хроматографа для дальнейшего хромато-масс-спектрометрического анализа. При этом для анализа используют Хроматограф - «Finnigan Surveyor LC Pump Plus». Детектор - масс-спектрометрический детектор «LCQ Fleet MS» (квадрупольная ионная ловушка). Аналитическую колонку - Ultrasphere 5 ODS фирмы Hichrom Ltd., Великобритания (150×4,6 мм; 5 мкм). Супернатант инжектируют в петлю хроматографа в объеме 10 мкл. Подвижная фаза состоит из двух растворов: 10 мМ ацетат аммония, подкисленный ледяной уксусной кислотой до pH 3.7 (раствор А) и ацетонитрил с 10 мМ ацетатом аммония в соотношении (90:10) (раствор Б), взятых в процентном соотношении растворов А:Б 90:10 соответственно. Работу проводят в изократическом режиме элюирования. При этом скорость потока подвижной фазы составляет 0,7 мл/мин. Объем пробы - 25 мкл. Температура разделения 35°C. Продолжительность хроматографирования - 10 минут. Время удерживания аналита - 3,15±0,05 минут. Время удерживания внутреннего стандарта L-аланил-карнозин - 3,28±0,05 минут. Детектирование: масс-спектрометрическое, по дочерним ионам с m/z 110.0, 156.1, 180.0, 210.1, образующимся в результате распада молекулярного иона карнозина с m/z 227.1 при нормализованной энергии соударений 35 eV (масс-спектр второго порядка для карнозина представлен на фигуре 1). Внутренний стандарт L-аланил-карнозин детектируют по суммарному ионному току дочерних ионов в диапазоне m/z 75-300, образующихся в результате распада молекулярного иона L-аланил-карнозина с m/z 298.3. Масс-спектрометр работает в режиме регистрации ионов, положительно заряженных электроспреем (ESI), создаваемым напряжением в 5 кВ. Скорость потока газа-небулайзера (азота): 5 л/мин, давление на распылителе - 100 psi. Температура интерфейса капилляра составляет 350°C, температура нагревателя - 300°C. Амплитуда возбуждения на концевых электродах ловушки 0,1 В. В качестве демпфирующего газа в ионной ловушке использовался гелий. Данные обрабатывались с помощью Xcalibur 2.1 w/Foimdation 1.0.1.

Были проведены определения карнозина в плазме крови и гомогенате ткани мозга.

Приготовление реактивов.

Все растворители имели квалификацию «Для хроматографии», реактивы - не ниже «ч.д.а.». Для приготовления растворов стандартных образцов использовали субстанции стандартов карнозина и аланил-карнозина производства Hamati Chemicals Ltd. Для количественного определения готовили маточные растворы стандартов карнозина и аланил-карнозина в метаноле с концентрациями 1 мг/мл. Раствор карнозина применяли для приготовления растворов рабочих стандартных образцов на плазме крови с концентрациями 3,13 мкг/мл; 6,25 мкг/мл; 12,5 мкг/мл; 25 мкг/мл; 50 мкг/мл; 100 мкг/мл; 200 мкг/мл; 400 мкг/мл; 800 мкг/мл; 1600 мкг/мл.

На основании пилотного исследования было установлено, что в мозге максимальная тканевая концентрация карнозина была значительно меньше, чем в крови. Соответственно градуировку для количественного определения карнозина получали в концентрационном диапазоне: 0,39-50 мкг/мл: 0,39 мкг/мл; 0,78 мкг/мл; 1,56 мкг/мл; 3,13 мкг/мл; 6,25 мкг/мл, 12,5 мкг/мл, 25 мкг/мл, 50 мкг/мл. Раствор внутреннего стандарта с концентрацией 1 мг/мл разбавляли в 5 раз для получения рабочего раствора аланил-карнозина с концентрацией 200 мкг/мл.

Типичные хроматограммы образцов интактной плазмы крови, гомогената интактного мозга и демонстрационная хроматограмма образца гомогената ткани мозга с концентрацией карнозина 50 мкг/мл представлены на фигуре 2а, б, в. На фиг. 2а представлена хроматограмма депротеинизированного образца интактной плазмы крови. На фиг. 2б, представлена хроматограмма депротеинизированного образца ткани мозга (пик с TR=4,25 мин - пик базального карнозина). На фигуре 2в представлена хроматограмма депротеинизированного образца гомогената ткани мозга с концентрацией карнозина 50 мкг/мл, верхний пик - пик аналита, нижний пик - пик внутреннего стандарта.

Количественное определение карнозина.

По причине того, что в интактной крови мышей карнозин отсутствует, а в мозге его базальная концентрация довольно высока, а также по причине существенных отличий в матричном эффекте со стороны разных биосубстратов, было принято решение сделать две самостоятельные градуировки для карнозина в мозге и карнозина в крови. Градуировочная зависимость для карнозина в плазме крови описывалась формулой:

С=158,230602×AR, где С - концентрация карнозина (мкг/мл), AR (Area Ratio) - отношение площадей пиков аналита и внутреннего стандарта. Коэффициент корреляции составил R2=0.9986, что соответствует надлежащей аналитической аппроксимации.

Поскольку в работе использовался гомогенат ткани мозга, полученный при гомогенизации мозга мышей в дистиллированной воде, взятой в соотношении 1:2 (m:v), концентрация, полученная при определении содержания вещества в гомогенате, должна быть перемножена на 3 (С(мкг/г)=3*С(мкг/мл). Кроме того, в связи с наличием довольно высокого содержания карнозина в ткани интактного мозга, для определения содержания экзогенного карнозина был использован следующий метод перерасчета, с учетом поправки на базальный карнозин:

Сэкз=(Sобщ-Sбаз)/SIS*0,0746885, где Сэкз - концентрация экзогенного карнозина, Sобщ - площадь хроматографического пика карнозина в образце гомогената мозга животного, получавшего экзогенный карнозин, Sбаз - рассчитанная средняя площадь пика базального карнозина, SIS - площадь пика внутреннего стандарта. За площадь пика базального карнозина принимали среднее значение, рассчитанное из площадей пиков карнозина в гомогенате мозга 8-ми интактных мышей.

Калибровочные кривые представлены на фиг. 3, 4. На фиг. 3 представлена калибровочная зависимость карнозина в плазме крови. На фиг. 4 представлена калибровочная зависимость карнозина в гомогенате ткани мозга.

Точность и воспроизводимость определения карнозина в биологических материалах.

Точность выражалась в виде коэффициента вариации (% C.V.) для каждой серии образцов согласно уравнению: S D x ¯ × 100 % , где

SD - стандартное отклонение серии определений карнозина;

x ¯ - среднее арифметическое значение полученных концентраций карнозина.

Воспроизводимость измерялась как процент отклонения (% dev.) от теоретического значения по формуле: x ¯ μ ¯ μ ¯ × 100 % , где

x ¯ - среднее арифметическое значение полученных концентраций;

Для метрологической валидации полученной методики определяли точность в течение рабочего дня. Каждый из образцов, предназначенных для контроля качества, анализировали в течение 1 рабочего дня (6 определений). Также провели контроль во время исследования и после его окончания.

Результаты представлены в таблице 1 и 2.

Относительная ошибка определения карнозина не превышала 10%.

Таким образом, заявленный способ обладает высокой селективностью и чувствительностью, не требует проведения многочисленных предварительных химических реакций и не предусматривает использование большого количества химических реактивов.

Высокая точность и воспроизводимость биоаналитического метода количественного определения карнозина в биологических жидкостях и тканях обеспечивает идентификацию вещества с установленными характеристиками погрешности, что позволяет использовать данную методику как в экспериментальной, так и клинической фармакокинетике.

Похожие патенты RU2585115C1

название год авторы номер документа
Способ определения топирамата в плазме крови 2016
  • Абаимов Денис Александрович
  • Сариев Абрек Куангалиевич
  • Прохоров Денис Игоревич
  • Скородумов Иван Анатольевич
  • Носкова Татьяна Юрьевна
  • Шведков Виктор Васильевич
RU2631613C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОКСИМА ПИНОСТРОБИНА В ПЛАЗМЕ КРОВИ 2015
  • Сейфулла Рошен Джафарович
  • Абаимов Денис Александрович
  • Сариев Абрек Куангалиевич
  • Прохоров Денис Игоревич
  • Танкевич Мария Васильевна
RU2568876C1
Способ количественного определения амантадина в плазме крови 2017
  • Абаимов Денис Александрович
  • Сариев Абрек Куангалиевич
  • Полещук Всеволод Владимирович
  • Федотова Екатерина Юрьевна
  • Шабалина Алла Анатольевна
  • Танашян Маринэ Мовсесовна
  • Литвин Александр Алексеевич
  • Колыванов Геннадий Борисович
  • Ковалев Георгий Иванович
RU2650968C1
Способ количественного определения леводопы в плазме крови 2017
  • Абаимов Денис Александрович
  • Сариев Абрек Куангалиевич
  • Пантюхова Елена Юрьевна
  • Полещук Всеволод Владимирович
  • Федотова Екатерина Юрьевна
  • Шабалина Алла Анатольевна
  • Костырева Марина Владимировна
  • Иллариошкин Сергей Николаевич
  • Танашян Маринэ Мовсесовна
RU2665164C1
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ 2-ФЕНОКСИЭТАНОЛА В БИОЛОГИЧЕСКИХ СРЕДАХ 2021
  • Сергеевичев Давид Сергеевич
  • Нефёдов Андрей Алексеевич
  • Фоменко Владислав Викторович
  • Салахутдинов Нариман Фаридович
RU2776730C1
Способ количественного определения салицилатов в плазме крови 2016
  • Абаимов Денис Александрович
  • Сариев Абрек Куангалиевич
  • Танашян Маринэ Мовсесовна
  • Шабалина Алла Анатольевна
  • Теленкова Надежда Григорьевна
  • Спавронская Лариса Рафаиловна
RU2622996C1
Способ количественного определения ликарбазепина в плазме крови 2017
  • Абаимов Денис Александрович
  • Сариев Абрек Куангалиевич
  • Шабалина Алла Анатольевна
  • Танашян Маринэ Мовсесовна
  • Шведков Виктор Васильевич
  • Носкова Татьяна Юрьевна
  • Красников Алексей Владимирович
RU2660364C1
Способ количественного определения дисульфирама в биологических средах 2019
  • Фоменко Владислав Викторович
  • Салахутдинов Нариман Фаридович
  • Рогачев Артем Дмитриевич
  • Сергеевичев Давид Сергеевич
RU2701524C1
Средство, обладающее антиагрегантной, цитопротекторной и антиоксидантной активностью 2018
  • Танашян Маринэ Мовсесовна
  • Федорова Татьяна Николаевна
  • Стволинский Сергей Лейбович
  • Андреева Людмила Александровна
  • Нагаев Игорь Юлианович
  • Мигулин Василий Андреевич
  • Шабалина Алла Анатольевна
  • Трубицына Ирина Евгеньевна
  • Лопачев Александр Васильевич
  • Куликова Ольга Игоревна
  • Абаимов Денис Александрович
RU2694061C1
Способ определения концентрации противовирусных препаратов в биоматериалах лабораторных животных 2020
  • Шишкина Лариса Николаевна
  • Бормотов Николай Иванович
  • Скарнович Максим Олегович
  • Серова Ольга Алексеевна
  • Скарнович Мария Александровна
  • Мазурков Олег Юрьевич
RU2748249C1

Иллюстрации к изобретению RU 2 585 115 C1

Реферат патента 2016 года СПОСОБ ОПРЕДЕЛЕНИЯ КАРНОЗИНА В БИОЛОГИЧЕСКИХ МАТЕРИАЛАХ

Изобретение относится к области медицины, а именно к экспериментальной фармакологии, и может быть использовано для количественного определения карнозина в тканях и физиологических жидкостях. Определение карнозина в биологических материалах осуществляют высокоселективным методом масс-спектрометрии с применением электроспрейной ионизации. При этом предварительно осуществляют депротеинизацию плазмы крови с помощью 10% водного раствора трихлоруксусной кислоты. Затем к депротеинизированному образцу добавляют аликвоту раствора внутреннего стандарта L-аланил-карнозина. А разделение продуктов экстракции проводят на обращенно-фазной хроматографической колонке 4,6×150 мм с температурой разделения 35°C и скоростью подачи элюента 0,7 мл/мин. Причем в качестве элюента применяют 10 мМ ацетат аммония, подкисленный ледяной уксусной кислотой до pH 3.7, и смесь ацетонитрила с 10 мМ ацетатом аммония в соотношении 90:10, взятые в процентном соотношении 10:90 соответственно. Детектирование карнозина проводят по четырем дочерним ионам с m/z 110.0, 156.1, 180.0, 210.1, образующимся в результате распада молекулярного иона карнозина с m/z 227.1. А концентрацию карнозина рассчитывают по отношению площади хроматографического пика карнозина к площади пика внутреннего стандарта - L-аланил-карнозина. Изобретение обеспечивает высокоселективный и чувствительный хроматомасс-спектрометрический метод количественного определения карнозина в биологических субстратах. 6 ил., 2 табл., 1 пр.

Формула изобретения RU 2 585 115 C1

Способ определения карнозина в биологических материалах, включающий анализ вещества высокоселективным методом масс-спектрометрии с применением электроспрейной ионизации, отличающийся тем, что предварительно осуществляют депротеинизацию плазмы крови с помощью 10% водного раствора трихлоруксусной кислоты, затем к депротеинизированному образцу добавляют аликвоту раствора внутреннего стандарта L-аланил-карнозина, разделение продуктов экстракции проводят на обращенно-фазной хроматографической колонке 4,6×150 мм с температурой разделения 35°C и скоростью подачи элюента 0,7 мл/мин, при этом в качестве элюента применяют 10 мМ ацетат аммония, подкисленный ледяной уксусной кислотой до pH 3.7, и смесь ацетонитрила с 10 мМ ацетатом аммония в соотношении 90:10, взятые в процентном соотношении 10:90 соответственно, детектирование карнозина проводят по четырем дочерним ионам с m/z 110.0, 156.1, 180.0, 210.1, образующимся в результате распада молекулярного иона карнозина с m/z 227.1, а его концентрацию рассчитывают по отношению площади хроматографического пика карнозина к площади пика внутреннего стандарта - L-аланил-карнозина.

Документы, цитированные в отчете о поиске Патент 2016 года RU2585115C1

Фадеева Д.А., Халикова М.А., Новиков О.О Применение прямой ацидометрии для количественного определения карнозина., Научные ведомости Белгородского государственного университета, Серия: Медицина
Фармация, 2010, вып
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы 1923
  • Бердников М.И.
SU12A1
Дорожная спиртовая кухня 1918
  • Кузнецов В.Я.
SU98A1
Писарев Д.И., Новиков О.О., Васильев Г.В., Селютин О.А
Опыт использования метода MALDI/TOF/MS в

RU 2 585 115 C1

Авторы

Сейфулла Рошен Джафарович

Абаимов Денис Александрович

Сариев Абрек Куангалиевич

Федорова Татьяна Николаевна

Стволинский Сергей Львович

Лопачев Александр Васильевич

Пантюхова Елена Юрьевна

Коновалова Евгения Викторовна

Даты

2016-05-27Публикация

2015-03-05Подача