ЛАЗЕРНЫЙ ВОЛОКОННЫЙ СКАЛЬПЕЛЬ С ТЕРМООПТИЧЕСКИМ НАКОНЕЧНИКОМ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ Российский патент 2016 года по МПК A61B18/22 

Описание патента на изобретение RU2586847C1

Изобретение относится к медицинской технике, в частности к лазерным установкам, и может быть использовано при лазерных термовоздействиях в хирургии, а также в терапии.

Разнообразные методики хирургического лечения требуют инструмента, позволяющего эффективно рассекать ткани с минимальными побочными эффектами. Сложность строения биологических объектов, значительное разнообразие в характере воздействия на ткани различных физических способов рассечения и коагуляции определяют необходимость использования многих типов скальпелей.

Известны скальпели, при работе которых биологическая ткань термо деструктурируется и аблируется в результате поглощения в ткани электромагнитного излучения в области касания скальпеля (патент на изобретение RU 98123393 «Электрохирургический скальпель», RU 2154435 «Электрохирургический скальпель»), в частности, известен «радиоскальпель», в котором используется высокочастотное электромагнитное излучение (патент на изобретение RU 2131222 «Электрохирургический скальпель», патент на полезную модель RU 143680 «Электрохирургический биполярный скальпель», патент на изобретение ЕР 0910992 «A radio scalpel»). Недостатками такого скальпеля являются большой объем подвергающейся облучению мощного электромагнитного излучения ткани и сложность введения такого скальпеля в закрытые полости.

Одним из основных элементов лазерного скальпеля является оптическое волокно, которое является не только средством доставки излучения к объекту исследования, но контактирует с биотканью, представляя собой скальпель. Кварцевые волокна очень технологичны, удобны в использовании в лазерной хирургии. Обычно режущей частью лазерного скальпеля является очищенный от защитной оболочки торец стеклянной сердцевины кварцевого волокна. Оптическое волокно обладает механической гибкостью, при этом кварцевая сердцевина очень прочная и выдерживает высокие температуры на торце, которые возникают при карбонизации биоткани в процессе лазерного воздействия на биоткань при резке.

Известны лазерные волоконные скальпели, при работе которых биологическая ткань термо деструктурируется и аблируется в результате поглощения в ткани оптического лазерного излучения, доставляемого в оперируемую область через оптический волоконный световод с открытым концом или снабженный фокусирующим объективом (патент на изобретение RU 2172190 «Лазерное медицинское устройство "КРИСТАЛЛ"», патент на изобретение US 5366456 «Angle firing fiber optic laser scalpel and method of use», патент на изобретение EP 0626229 «Solid state laser for removing physiologic tissue»). Недостатками таких скальпелей являются необходимость подбора индивидуального источника лазерного излучения с длиной волны, соответствующей максимуму поглощения оперируемой биоткани, а также относительно большой объем подвергающейся облучению мощного лазерного излучения ткани из-за конечной длины поглощения света в биоткани и сильного светорассеяния в ней.

Известен способ уменьшения облучаемой биоткани при использовании лазерного волоконного скальпеля, заключающийся в зачернении оперируемого участка биоткани, и тем самым в локализации травматируемой области (патент на изобретение US 5020995 «Surgical treatment method and instrument). Недостаток - необходимость использования большого количества реагентов, не всегда полностью совместимых с биотканью, в сложности зачернения некоторых биотканей и в закрытых полостях.

Известен способ уменьшения облучаемой биоткани при использовании лазерного волоконного скальпеля, заключающийся в инициировании в оперируемом участке биоткани поцесса деструкции с образованием поглощающих агентов (сажи) и затем в самоподдерживании процесса деструкции за счет поглощения света на образующихся поглощающих агентах (George Е. Romanos «Diode Laser Soft-Tissue Surgery: Advancement Aimed at Consistent Cutting, Improved Clinical Outcomes», Compendum of Continuing Education in Dentistry, Nov/Dec 2013, pp. 752-758).

Ближайшим аналогом изобретения, использующим эту технологию, является лазерный волоконный скальпель с термооптическим наконечником (thermo-optical tip) и способ его изготовления (Felix Feldchtein, Gregory В. Altshuler, Ph.D. «Advances in Surgical Techniques Thermo-Optically Powered (TOP®) Surgery» http://media.dentalcompare.com/m/25/Downloads/DPI%20WhitePaper.pdf; Magid KS, Belikov AV, Pushkareva A, Skrypnik AV, Feldchtein FI, Strunina T, et al. «Soft tissue surgery with thermo-optical tips with a real-time temperature control». ALD 2010 Annual Meeting. Miami FL: Academy of Laser Dentistry; 2010. p. TH-27).

Кварцевый волоконный световод, соединенный с лазером, подводит лазерное излучение к обрабатываемому участку, термооптический наконечник волоконного световода нагревается лазерным излучением до высокой температуры, и биоткань раздвигается торцом волокна. Способ изготовления прототипа состоит во временном зачернении выходного конца волоконного световода, что позволяет нагреть его до высокой температуры за счет поглощения им оптического излучения лазера. Зачернение выходного конца волоконного световода осуществляется первоначальным нанесением на выходной конец волоконного световода поглощающего вещества (с фирменной таблетки), при поглощении света на котором (при контакте с биотканью) конец световода разогревается до температуры более 100°C, возникает первоначальная деструкция биоткани, инициируя тем самым самоподдерживающийся процесс деструкции и абляции. Поглощающие и механические свойства термооптического наконечника сохраняются несколько секунд, в течении которых белок обугливается, окрашивается в черный цвет, цепляется к концу световода и поглощает излучение лазера, нагревая кончик до нескольких сот градусов, что позволяет поддерживать там температуру, необходимую для резки и коагуляции, но режущий эффект не является постоянным, т.к. черный осадок на волокне постоянно соскабливается по мере прохождения волокна через ткань, требует компенсации колебаний температуры за счет изменения мощности лазера.

Таким образом, недостатки устройства и способа его изготовления заключаются в том, что самоподдерживающийся процесс деструкции и абляции нестабилен, что заставляет искать средства автоматического поддержания температуры в области обработки, а при перерыве обработки, в том числе при случайном срыве, необходимо заново проводить процесс инициации (выводить световод из обрабатываемой раны, чернить его кончик и т.д.).

Задачей, на которую направлено предлагаемое устройство и способ его изготовления, является создание стабильных условий воздействия излучения на торце волокна-ткань, а именно нанесение покрытия на выходной конец волоконного световода, используемого как собственно режущая поверхность, сохраняющего свои поглощающие и механические свойства в течение длительного времени.

Технический эффект в части, касающейся устройства, достигается нанесением на торец и прилегающую цилиндрическую часть (~0,5 мм) оптоволоконного световода сильно поглощающего свет покрытия, сохраняющей свои поглощающие и механические свойства в течение длительного времени.

Технический эффект в части, касающейся способа, достигается обработкой выходного конца волоконного световода светопоглощающим веществом, не меняющим режущих свойств волокна, обладающим механической прочностью при высыхании, для разогревания его при рабочей мощности лазера до 500-600°C.

Новым в части, касающейся устройства, является то, что для использования кварцевого волокна световода лазера, как режущей поверхности, создания условий сильного поглощения света на выходном конце волоконного световода, т.е. реализации термооптического наконечника, на выходной конец волоконного световода наносится высокотемпературное широкополосное светопоглощающее покрытие, сохраняющее свои поглощающие и механические свойства в течение длительного времени (не менее получаса) и позволяющее проводить резание «боком», т.е. в направлении, перпедикулярном оси световода. При этом унифицируются режимы воздействия для лазеров любых длин волн, имеющих кварцевое волокно как средство доставки излучения к объекту воздействия.

Новым в части, касающейся способа изготовления, является приготовление коллоидного раствора порошка графита в кремнийорганическом лаке, покрытие им выходного конца волоконного световода, подсушивание нанесенного слоя покрытия, проверка качества нанесенного покрытия. При заранее приготовленном коллоидном растворе устройство может быть изготовлено и обновлено нанесением поглощающего слоя в условиях клиники.

Устройство представляет собой лазерный источник мощного оптического излучения и волоконный световод для доставки излучения к обрабатываемому участку, с нанесенным на режущий конец специальным покрытием. Покрытие состоит из светопоглощающего материала и связующего светопоглощающего материала с материалом световода.

В частном случае реализации покрытие состоит из смеси порошка графита и кремнийорганического лака в следующем соотношении компонентов:

Порошок графита - 5÷20%

Кремнийорганический лак - до 100%.

Графит имеет большой коэффициент поглощения в широкой области спектра, имеет высокую термостабильность, практически безвреден. Кремнийорганический лак может быть приготовлен на основе полиметифенилсилоксановой смолы типа КО-08 или на основе отстоя эмали КО-8101. Кремнийорганический лак является хорошим связующим графита с материалом световода (кварцем).

Способ изготовления реализуют следующим образом.

Выходной конец подключенного к лазерному источнику волоконного световода зачищают от защитных оболочек. Готовят коллоидный раствор порошка графита в кремнийорганическом лаке в соотношении компонентов: порошок графита - 5÷20%; кремнийорганический лак - до 100%. Компоненты тщательно перемешиваются.

Каплю готового коллоидного раствора наносят на поверхность стекла (например, предметное микроскопное стекло). Выходной конец волоконного световода (торец и ближайшую часть световода ~0,5 мм) окунают в каплю. Включают лазерный источник мощностью 0,5÷1 Вт на время до 1 мин. Подсушивают нанесенный слой. Для получения более толстого слоя операцию повторяют. Включают лазерный источник на мощность 1,5÷2 Вт на время 0,5÷1 мин, наблюдают белое свечение раскаленного (в воздухе более 2000°C) выходного конца волоконного световода. Лазерный волоконный скальпель с термооптическим наконечником готов к использованию.

Для получения более толстого слоя операцию нанесения покрытия повторяют.

Похожие патенты RU2586847C1

название год авторы номер документа
Способ изготовления лазерного волоконного скальпеля со стабилизированной температурой термооптического наконечника 2022
  • Афанасьев Андрей Владимирович
  • Битюрин Никита Михайлович
  • Бредихин Владимир Иосифович
  • Каменский Владислав Антониевич
  • Сапогова Наталья Владимировна
RU2786481C1
Лазерный скальпель 2023
  • Минин Игорь Владиленович
  • Минин Олег Владиленович
RU2803933C1
СПОСОБ РАССЕЧЕНИЯ БИОТКАНИ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Варев Геннадий Александрович
  • Гусев Александр Евгеньевич
  • Суханов Сергей Викторович
  • Бушмелев Николай Иванович
RU2632803C1
СПОСОБ РАССЕЧЕНИЯ БИОТКАНИ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Минаев Владимир Павлович
RU2535454C2
ЛАЗЕРНОЕ ИЗЛУЧАЮЩЕЕ УСТРОЙСТВО ДЛЯ МЕДИЦИНСКОЙ ОБРАБОТКИ 1991
  • Норио Дайкузоно[Jp]
RU2038106C1
УСТРОЙСТВО ДЛЯ ЛЮМИНЕСЦЕНТНОЙ ДИАГНОСТИКИ НОВООБРАЗОВАНИЙ 2012
  • Блинов Леонид Михайлович
  • Гуляев Юрий Васильевич
  • Панас Андрей Иванович
  • Шилов Игорь Петрович
  • Рябов Александр Сергеевич
  • Щамхалов Камил Сайпуевич
RU2483678C1
СПОСОБ ГИПЕРПИРЕКСИЧЕСКОГО ВОЗДЕЙСТВИЯ НА БИОТКАНИ ТРЕХРЕЖИМНЫМ ЛАЗЕРНО-ПОЛИХРОМАТИЧЕСКИМ ОБЛУЧАТЕЛЕМ 2011
  • Духанин Сергей Михайлович
  • Грибов Алексей Игоревич
RU2458713C1
УСТРОЙСТВО ДЛЯ ЛАЗЕРНОГО СВАРИВАНИЯ РАССЕЧЕННЫХ БИОЛОГИЧЕСКИХ ТКАНЕЙ 2015
  • Герасименко Александр Юрьевич
  • Подгаецкий Виталий Маркович
  • Рябкин Дмитрий Игоревич
RU2611918C1
Оптическое волокно для записи брэгговской решетки лазером с длиной волны в ближнем и среднем УФ диапазоне, способ получения защитного фторполимерного покрытия оптического волокна и способ нанесения этого покрытия на кварцевую часть волокна 2017
  • Токарев Алексей Владимирович
  • Анчуткин Гордей Глебович
  • Варжель Сергей Владимирович
  • Куликов Андрей Владимирович
  • Мешковский Игорь Касьянович
RU2650787C1
ЛАЗЕРНОЕ ХИРУРГИЧЕСКОЕ УСТРОЙСТВО И СПОСОБ ЕГО ИСПОЛЬЗОВАНИЯ 1996
  • Будник В.Н.
  • Груздев В.А.
  • Одинцов О.Д.
RU2113827C1

Реферат патента 2016 года ЛАЗЕРНЫЙ ВОЛОКОННЫЙ СКАЛЬПЕЛЬ С ТЕРМООПТИЧЕСКИМ НАКОНЕЧНИКОМ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к медицинской технике, в частности к лазерным установкам. Кварцевый волоконный световод, соединенный с лазером, подводит лазерное излучение к обрабатываемому участку, выходной конец волоконного световода с нанесенным высокотемпературным широкополосным светопоглощающим покрытием, сохраняющим свои поглощающие и механические свойства в течение длительного времени, является термооптическим инструментом для резки и коагуляции. Способ изготовления лазерного волоконного скальпеля с термооптическим наконечником состоит в зачернении выходного конца волоконного световода путем нанесения приготовленного коллоидного раствора порошка графита в кремнийорганическом лаке на торец и на прилегающую цилиндрическую часть (~ 0,5 мм) волоконного световода, что позволяет длительно поддерживать на нем высокую температуру за счет поглощения им оптического излучения лазера. Способ включает также подсушку и проверку. 2 н. и 2 з.п. ф-лы.

Формула изобретения RU 2 586 847 C1

1. Лазерный волоконный скальпель с термооптическим наконечником, состоящий из кварцевого волоконного световода, соединенного с лазером и подводящего лазерное излучение к обрабатываемому участку, а также термооптического наконечника волоконного световода, отличающийся тем, что термооптический наконечник выполнен в виде покрытия, состоящего из смеси порошка графита и кремнийорганического лака в следующем соотношении компонентов:
Порошок графита 5÷20% Кремнийорганический лак до 100%

2. Способ изготовления лазерного волоконного скальпеля с термооптическим наконечником, включающий зачернение выходного конца волоконного световода, что позволяет нагреть его до высокой температуры за счет поглощения им оптического излучения лазера, отличающийся тем, что готовят коллоидный раствор порошка графита в кремнийорганическом лаке, выходной конец волоконного световода покрывают упомянутым готовым раствором, подсушивают нанесенный слой покрытия, проводят проверку качества нанесенного покрытия.

3. Способ изготовления лазерного волоконного скальпеля с термооптическим наконечником по п. 2, отличающийся тем, что предварительно зачищают выходной конец волоконного световода от защитных оболочек, нанесенный слой подсушивают путем подачи в волоконный световод с зачерненным наконечником лазерного излучения мощностью 0,5÷1 Вт на время до 1 мин, проверку качества нанесенного покрытия проводят путем кратковременной 0,5÷1 мин подачи лазерного излучения с мощностью 1,5÷2 Вт и наблюдения белого свечения наконечника.

4. Способ изготовления лазерного волоконного скальпеля с термооптическим наконечником по п. 2, отличающийся тем, что для получения более толстого слоя операцию нанесения покрытия повторяют.

Документы, цитированные в отчете о поиске Патент 2016 года RU2586847C1

ЛАЗЕРНОЕ МЕДИЦИНСКОЕ УСТРОЙСТВО "КРИСТАЛЛ" 2000
  • Кочетков М.А.
  • Луковкин А.В.
RU2172190C1
ЛАЗЕРНОЕ ИЗЛУЧАЮЩЕЕ УСТРОЙСТВО ДЛЯ МЕДИЦИНСКОЙ ОБРАБОТКИ 1991
  • Норио Дайкузоно[Jp]
RU2038106C1
US5366456A, 22.11.1994.

RU 2 586 847 C1

Авторы

Битюрин Никита Михайлович

Бредихин Владимир Иосифович

Каменский Владислав Антониевич

Даты

2016-06-10Публикация

2014-12-12Подача