СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ ИММУНОСТИМУЛИРУЮЩИМ ДЕЙСТВИЕМ Российский патент 2016 года по МПК A61K36/28 A61K47/36 A61K9/51 A61J3/07 B01J13/02 B82B3/00 

Описание патента на изобретение RU2590666C1

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении микрокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием, отличающимся тем, что в качестве оболочки нанокапсул используется альгинат натрия, а в качестве ядра - настойки эхинацеи, при получении нанокапсул методом осаждения нерастворителем с применением бутилхлорида в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием бутилхлорида в качестве осадителя, а также использование альгината натрия в качестве оболочки частиц и настоек лекарственных растений, обладающих иммуностимулирующим действием - в качестве ядра.

Результатом предлагаемого метода является получение нанокапсул лекарственных растений, обладающих иммуностимулирующим действием.

ПРИМЕР 1. Получение нанокапсул настойки эхинацеи, соотношение ядро : оболочка 1:3

5 мл настойки эхинацеи добавляют в суспензию альгината натрия в петролейном эфире, содержащего указанного 3 г полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 10 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул настойки эхинацеи, соотношение ядро : оболочка 1:1

5 мл настойки эхинацеи добавляют в суспензию альгината натрия в петролейном эфире, содержащего указанного 1 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 6 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.

Похожие патенты RU2590666C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ ИММУНОСТИМУЛИРУЮЩИМ ДЕЙСТВИЕМ 2015
  • Кролевец Александр Александрович
RU2602167C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ КАРДИОТОНИЧЕСКИМ ДЕЙСТВИЕМ В КОНЖАКОВОЙ КАМЕДИ 2015
  • Кролевец Александр Александрович
RU2596484C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ КАРДИОТОНИЧЕСКИМ ДЕЙСТВИЕМ 2015
  • Кролевец Александр Александрович
RU2599481C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ СЕДАТИВНЫМ ДЕЙСТВИЕМ 2015
  • Кролевец Александр Александрович
RU2597151C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ СЕДАТИВНЫМ ДЕЙСТВИЕМ, В АГАР-АГАРЕ 2015
  • Кролевец Александр Александрович
RU2605613C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ ИММУНОСТИМУЛИРУЮЩИМ ДЕЙСТВИЕМ, В АГАР-АГАРЕ 2015
  • Кролевец Александр Александрович
RU2602166C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ ИММУНОСТИМУЛИРУЮЩИМ ДЕЙСТВИЕМ В КАРРАГИНАНЕ 2015
  • Кролевец Александр Александрович
RU2602168C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ ГРУППЫ В 2015
  • Кролевец Александр Александрович
RU2605596C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ ИММУНОСТИМУЛИРУЮЩИМ ДЕЙСТВИЕМ В КОНЖАКОВОЙ КАМЕДИ 2015
  • Кролевец Александр Александрович
RU2600441C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ БЕТУЛИНА 2015
  • Кролевец Александр Александрович
RU2599483C1

Иллюстрации к изобретению RU 2 590 666 C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ ИММУНОСТИМУЛИРУЮЩИМ ДЕЙСТВИЕМ

Изобретение относится в области нанотехнологии и фармацевтики. Описан способ получения нанокапсул с настойкой эхинацеи в оболочке из альгината натрия. Согласно способу настойку эхинацеи добавляют в суспензию альгината натрия в петролейном эфире в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Массовое соотношение ядро:оболочка составляет 1:1 или 1:3. Затем приливают бутилхлорид. Полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 1 ил., 3 пр.

Формула изобретения RU 2 590 666 C1

Способ получения нанокапсул с настойкой эхинацеи в альгинате натрия, характеризующийся тем, что в качестве оболочки нанокапсул используется альгинат натрия, при этом настойку эхинацеи добавляют в суспензию альгината натрия в петролейном эфире в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее приливают бутилхлорид, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро:оболочка может быть 1:1 или 1:3.

Документы, цитированные в отчете о поиске Патент 2016 года RU2590666C1

ЧУЕШОВ В.И
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
МАШКОВСКИЙ М.Д., Лекарственные средства, Москва, "Медицина", 1992, ч.1, стр.101-102
NAGAVARMA B
V
N
"Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, vol.5, suppl.3, 2012, pages 16-23.

RU 2 590 666 C1

Авторы

Кролевец Александр Александрович

Даты

2016-07-10Публикация

2015-04-14Подача