СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ ИММУНОСТИМУЛИРУЮЩИМ ДЕЙСТВИЕМ Российский патент 2016 года по МПК A61K36/28 A61K47/38 A61K9/51 A61J3/07 B82B3/00 

Описание патента на изобретение RU2602167C1

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

Известен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования (патент РФ 2173140, МПК A61K 009/50, A61K 009/127, опубл. 10.09.2001).

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

Известен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин (патент РФ 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубл. 27.06.2009). Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин).

Наиболее близким методом является способ, при котором в воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования (патент РФ 2134967, МПК A01N 53/00, A01N 25/28, опубл. 27.08.1999).

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием, в котором согласно изобретению в качестве оболочки нанокапсул используется натрий карбоксиметилцеллюлоза, а в качестве ядра - настойка эхинацеи.

Отличительной особенностью предлагаемого метода является получение нанокапсул с использованием натрий карбоксиметилцеллюлозы в качестве оболочки частиц и настойки лекарственного растения, обладающего иммуностимулирующим действием - в качестве ядра.

Результатом предлагаемого метода являются получение нанокапсул лекарственных растений, обладающих иммуностимулирующим действием.

Пример 1. Получение нанокапсул настойки эхинацеи, соотношение ядро:оболочка 1:3

5 мл настойки эхинацеи добавляют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире, содержащем указанного 3 г полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами, свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

Пример 2. Получение нанокапсул настойки эхинацеи, соотношение ядро:оболочка 1:1

5 мл настойки эхинацеи добавляют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире, содержащем указанного 1 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

Пример 3. Получение нанокапсул настойки эхинацеи, соотношение ядро:оболочка 3:1

15 мл настойки эхинацеи добавляют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире, содержащем указанного 1 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

Пример 4. Получение нанокапсул настойки эхинацеи, соотношение ядро:оболочка 1:5

5 мл настойки эхинацеи добавляют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире, содержащем указанного 5 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

Пример 5. Получение нанокапсул настойки эхинацеи, соотношение ядро:оболочка 5:1

25 мл настойки эхинацеи добавляют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире, содержащем указанного 1 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

Пример 6. Определение размеров нанокапсул методом NTA (см. рис. 1).

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.

Похожие патенты RU2602167C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ ИММУНОСТИМУЛИРУЮЩИМ ДЕЙСТВИЕМ 2015
  • Кролевец Александр Александрович
RU2590666C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ ИММУНОСТИМУЛИРУЮЩИМ ДЕЙСТВИЕМ, В АГАР-АГАРЕ 2015
  • Кролевец Александр Александрович
RU2602166C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ ИММУНОСТИМУЛИРУЮЩИМ ДЕЙСТВИЕМ В КАРРАГИНАНЕ 2015
  • Кролевец Александр Александрович
RU2602168C1
Способ получения нанокапсул лекарственных растений, обладающих седативным действием 2016
  • Кролевец Александр Александрович
RU2631479C1
Способ получения нанокапсул лекарственных растений, обладающих седативным действием 2015
  • Кролевец Александр Александрович
RU2613761C2
Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием в пектине 2016
  • Кролевец Александр Александрович
RU2647437C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ СПАЗМОЛИТИЧЕСКИМ ДЕЙСТВИЕМ 2015
  • Кролевец Александр Александрович
RU2605594C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ СЕДАТИВНЫМ ДЕЙСТВИЕМ В КАРРАГИНАНЕ 2015
  • Кролевец Александр Александрович
RU2605273C1
Способ получения нанокапсул АЕКола 2016
  • Кролевец Александр Александрович
RU2640128C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ КАРДИОТОНИЧЕСКИМ ДЕЙСТВИЕМ 2015
  • Кролевец Александр Александрович
RU2600861C1

Иллюстрации к изобретению RU 2 602 167 C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ ИММУНОСТИМУЛИРУЮЩИМ ДЕЙСТВИЕМ

Изобретение относится к способу получения нанокапсул с настойкой эхинацеи. Указанный способ характеризуется тем, что настойку эхинацеи добавляют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/мин, затем полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:3, 1:1, 3:1, 1:5 или 5:1. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул эхинацеи, а также увеличение их выхода по массе. 1 ил., 6 пр.

Формула изобретения RU 2 602 167 C1

Способ получения нанокапсул с настойкой эхинацеи, характеризующийся тем, что настойку эхинацеи добавляют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, затем полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:3, 1:1, 3:1, 1:5 или 5:1.

Документы, цитированные в отчете о поиске Патент 2016 года RU2602167C1

NAGAVARMA B
V
N
Different techniques for preparation of polymeric nanoparticles, Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, с.16-23
СОЛОДОВНИК В
Д
Микрокапсулирование, 1980, стр.136-162
КРОЛЕВЕЦ А
А
Применение нано- и микрокапсулирования в фармацевтике и пищевой промышленности
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Характеристика инкапсулирования, Вестник

RU 2 602 167 C1

Авторы

Кролевец Александр Александрович

Даты

2016-11-10Публикация

2015-07-13Подача