СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ ГРУППЫ В Российский патент 2016 года по МПК A61K31/525 A61K31/205 A61K31/4415 A61K31/51 A61K47/36 A61K9/51 A61J3/07 B82B3/00 

Описание патента на изобретение RU2605596C1

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В пат. РФ 2173140, МПК A61K 009/50, A61K 009/127, опубл. 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В пат. РФ 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубл. 27.06.2009 Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин).

Наиболее близким методом является способ, предложенный в пат. РФ 2134967, МПК A01N 53/00, A01N 25/28, опубл. 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении (2-4):1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул витаминов группы В, отличающимся тем, что в качестве оболочки нанокапсул используется альгинат натрия, а в качестве ядра - витамины (тиамина, рибофлавина, пиридоксина, фолиевой кислоты и карнитина) при получении нанокапсул методом осаждения нерастворителем с применением этилацетата в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием этилацетата в качестве осадителя, а также использование альгината натрия в качестве оболочки частиц и витамины группы В - в качестве ядра.

Результатом предлагаемого метода являются получение нанокапсул витаминов группы В.

ПРИМЕР 1. Получение нанокапсул тиамина (B1), соотношение ядро:оболочка 1:3

100 мг тиамина добавляют в суспензию альгината натрия в петролейном эфире, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул тиамина (В1), соотношение ядро:оболочка 1:1

100 мг тиамина добавляют в суспензию альгината натрия в петролейном эфире, содержащую указанного 100 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл этилацета. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул рибофлавина (В2), соотношение ядро:оболочка 1:3

100 мг рибофлавина добавляют в суспензию альгината натрия в петролейном эфире, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4. Получение нанокапсул рибофлавина (В2), соотношение ядро:оболочка 1:1

100 мг рибофлавина добавляют в суспензию альгината натрия в петролейном эфире, содержащую указанного 100 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 5. Получение нанокапсул пиридоксина (В6), соотношение ядро:оболочка 1:3

100 мг пиридоксина добавляют в суспензию альгината натрия в петролейном эфире, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 6. Получение нанокапсул пиридоксина (В6), соотношение ядро:оболочка 1:1

100 мг пиридоксина добавляют в суспензию альгината натрия в петролейном эфире, содержащую указанного 100 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 7. Получение нанокапсул фолиевой кислоты (В9), соотношение ядро:оболочка 1:3

100 мг фолиевой кислоты добавляют в суспензию альгината натрия в петролейном эфире, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 8. Получение нанокапсул фолиевой кислоты (В9), соотношение ядро:оболочка 1:1

100 мг фолиевой кислоты добавляют в суспензию альгината натрия в петролейном эфире, содержащую указанного 100 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 9 Получение нанокапсул карнитина (В11), соотношение ядро:оболочка 1:3

100 мг карнитина добавляют в суспензию альгината натрия в петролейном эфире, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 10 Получение нанокапсул карнитина (В11), соотношение ядро:оболочка 1:1

100 мг карнитина добавляют в суспензию альгината натрия в петролейном эфире, содержащую указанного 100 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 11 Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834 (рис.1, 2).

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length : Auto, Min Expected Size: Auto. длительность единичного измерения 215 s, использование шприцевого насоса.

Похожие патенты RU2605596C1

название год авторы номер документа
Способ получения нанокапсул витаминов группы В в каппа-каррагинане 2016
  • Кролевец Александр Александрович
RU2618449C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ 2014
  • Кролевец Александр Александрович
RU2575564C1
Способ получения нанокапсул розмарина в альгинате натрия 2015
  • Кролевец Александр Александрович
RU2613883C1
Способ получения нанокапсул бетулина 2015
  • Кролевец Александр Александрович
RU2626508C1
Способ получения нанокапсул солей металлов в альгинате натрия 2015
  • Кролевец Александр Александрович
RU2627577C1
Способ получения нанокапсул АЕКола 2016
  • Кролевец Александр Александрович
RU2640128C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ ИММУНОСТИМУЛИРУЮЩИМ ДЕЙСТВИЕМ 2015
  • Кролевец Александр Александрович
RU2590666C1
Способ получения нанокапсул АЕКола 2016
  • Кролевец Александр Александрович
RU2640129C1
Способ получения нанокапсул витаминов группы В в геллановой камеди 2015
  • Кролевец Александр Александрович
RU2616514C2
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ 2015
  • Кролевец Александр Александрович
RU2596482C1

Иллюстрации к изобретению RU 2 605 596 C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ ГРУППЫ В

Изобретение относится к способу получения нанокапсул витаминов группы B в альгинате натрия. Указанный способ характеризуется тем, что в качестве оболочки используется альгинат натрия, а в качестве ядра - витамины группы В, при массовом соотношении ядро:оболочка 1:3 или 1:1, при этом витамин добавляют в суспензию альгината натрия в петролейном эфире в присутствии препарата E472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее добавляют этилацетат, полученную суспензию отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул витаминов, а также увеличение их выхода по массе. 2 ил., 11 пр.

Формула изобретения RU 2 605 596 C1

Способ получения нанокапсул витаминов группы B в альгинате натрия, характеризующийся тем, что в качестве оболочки используется альгинат натрия, а в качестве ядра - витамины группы В, при массовом соотношении ядро:оболочка 1:3 или 1:1, при этом витамин добавляют в суспензию альгината натрия в петролейном эфире в присутствии препарата E472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее добавляют этилацетат, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Документы, цитированные в отчете о поиске Патент 2016 года RU2605596C1

NAGAVARMA B
V
N
"Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23
СОЛОДОВНИК В
Д., "Микрокапсулирование", 1980, стр.136-137
КРОЛЕВЕЦ А
А
"Применение нано- и микрокапсулирования в фармацевтике и пищевой промышленности
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Характеристика инкапсулирования",

RU 2 605 596 C1

Авторы

Кролевец Александр Александрович

Даты

2016-12-20Публикация

2015-08-24Подача