СПОСОБ СНИЖЕНИЯ НАКОПЛЕНИЯ ЛАКТАТА ПРИ КУЛЬТИВИРОВАНИИ И СПОСОБ ПОЛУЧЕНИЯ АНТИТЕЛА Российский патент 2016 года по МПК C12N5/02 C12P21/00 C12P21/08 C07K16/28 

Описание патента на изобретение RU2592680C2

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу снижения накопления лактата в культуре клеток, указанный способ, включающий добавление соли двухвалентных переходных металлов к культуре клеток. Настоящее изобретение также относится к способу получения полипептида, указанный способ, включающий добавление соли двухвалентных переходных металлов к среде для культивирования клеток для снижения накопления лактата, ферментирование и извлечение полипептида. Более конкретно, изобретение относится к способу выращивания клеток в системе культивирования клеток, снижающему накопление лактата в культуральной среде.

Уровень техники

Технологии культивирования животных клеток широко применяют в биомедицинских исследованиях и в фармацевтической промышленности. Оценка роста и метаболической активности клеток имеет большое значение для успешного контроля и совершенствования процесса культивирования клеток. Глюкоза и лактат представляют собой два метаболита, которые чаще всего требуют контроля. В составах большинства сред глюкоза служит в качестве как основного источника углерода, так и важного источника энергии. Вхождение глюкозы в гликолитический путь приводит к образованию пирувата в качестве конечного продукта. В клетках животных пируват или может быть направлен в цикл трикарбоновых кислот, или может быть превращен в лактат. При непрерывном культивировании клеток, из-за высокой скорости превращения глюкозы в пируват и неэффективного сопряжения между гликолизом и циклом трикарбоновых кислот, существует тенденция к накоплению лактата. Накопление лактата, в свою очередь, приводит к закислению культуральной среды. Кроме того, сам лактат также может быть токсичен для клеток млекопитающих даже при контролируемом рН. Накопление лактата часто представляет собой критический фактор, ограничивающий процесс культивирования клеток, в особенности, если плотность клеток высока.

В биофармацевтическом производстве, контроль глюкозы и лактата представляет собой установившуюся практику благодаря простоте и надежности измерений, а также их химической стабильности в культуральной среде. Что еще более важно, концентрация глюкозы дает возможность оценить энергию, тогда как лактат рассматривают как важный параметр для оценки накопления побочных продуктов метаболизма и ухудшения среды культивирования. В качестве критических параметров для культивирования, измерения уровней глюкозы и лактата часто представляет собой ключевой момент в разработках по управлению процессом при выполнении операций в биореакторе, таких как подпитка или перфузия.

Ранее были предприняты значительные усилия для корреляции метаболизма глюкозы и лактата с плотностью клеток. Скорость потребления глюкозы и скорость накопления лактата отражают метаболические активности культивируемых клеток.

Как уже говорилось ранее, накопление токсичных побочных продуктов, таких как лактат, ингибирует рост клеток и продукцию антител. Чрезмерное накопление лактата может привести к увеличению осмолярности среды или, в отсутствии контроля рН, к снижению рН культуры. Основное негативное воздействие лактата обусловлено снижением рН, которое возникает как следствие выделения лактата в культуральную среду.

В патенте США №6156570 раскрывается способ культивирования клеток, предпочтительно, клеток млекопитающих, который минимизирует накопление лактата.

В патенте США №7429491 раскрывается способ усовершенствования продукции белка в культуре клеток животных с применением глюкозы в ограниченной концентрации в культуре с подпиткой.

Предпринимаемые в прошлом попытки уменьшения уровня лактата, главным образом, были сосредоточены на А] подаче и поддержании глюкозы на очень низком уровне или на В] метаболической инженерии клеток, с применением различных молекулярно-биологических методов.

Данная работа раскрывает корреляцию между добавлением солей двухвалентных переходных металлов (меди, цинка) и накоплением лактата и возможные пути снижения накопления лактата.

Раскрытие изобретения

Соответственно, настоящее изобретение относится к способу снижения накопления лактата в культуре клеток, указанный способ, включающий добавление соли двухвалентных переходных металлов к культуре клеток, и к способу получения полипептида, указанный способ, включающий следующее: а) добавление соли двухвалентных переходных металлов к культуре клеток для снижения накопления лактата и b) ферментирование и извлечение полипептида.

Краткое описание чертежей

На фигуре 1А показана разница в уровне накопления лактата в присутствии соли меди по сравнению с контролем.

На фигуре 1В показана разница в уровне накопления лактата в присутствии соли цинка по сравнению с контролем.

На фигуре 2А показана разница в уровне накопления лактата в присутствии соли меди по сравнению с контролем.

На фигуре 2В показана разница в уровне накопления лактата в присутствии соли цинка по сравнению с контролем.

На фигуре 3 показана разница в уровне накопления лактата в присутствии соли цинка по сравнению с контролем.

На фигуре 4А показана разница в уровне накопления лактата в присутствии соли меди по сравнению с контролем.

На фигуре 4В показана разница в уровне накопления лактата в присутствии соли цинка по сравнению с контролем.

На фигуре 5А показана разница в уровне накопления лактата в присутствии соли меди по сравнению с контролем.

На фигуре 5В показана разница в уровне накопления лактата в присутствии соли цинка по сравнению с контролем.

На фигуре 6 показана разница в уровне накопления лактата в присутствии соли магния по сравнению с контролем.

На фигуре 7 показана разница в уровне накопления лактата в присутствии соли цинка по сравнению с контролем.

Осуществление изобретения

Настоящее изобретение относится к способу снижения накопления лактата в культуре клеток, указанный способ, включающий добавление соли двухвалентных переходных металлов к культуре клеток.

В воплощении настоящего изобретения, соль двухвалентных переходных металлов содержит металл, который выбирают из группы, включающей медь и цинк.

В воплощении настоящего изобретения, соль меди представляет собой сульфат меди и соль цинка представляет собой сульфат цинка.

Еще в одном воплощении настоящего изобретения, клетку получают из линии клеток млекопитающих.

Еще в одном воплощении настоящего изобретения, линию клеток млекопитающих выбирают из группы, включающей без ограничения клетки яичника китайского хомячка (СНО), NS0 (клетки несекретирующие 0) и BHK (клетки почки новорожденного хомячка).

Еще в одном воплощении настоящего изобретения, ион двухвалентного переходного металла добавляют в концентрации в диапазоне от примерно 0,2 мМ до примерно 0,4 мМ.

Еще в одном воплощении настоящего изобретения, культивирование проводят в системе, которую выбирают из группы, включающей без ограничения культивирование с подпиткой, периодическое культивирование, культивирование во встряхиваемых колбах и в биореакторе.

Еще в одном воплощении настоящего изобретения, снижение накопления уровня лактата равно от примерно 5% до примерно 40%.

Настоящее изобретение также относится к способу получения полипептида, где указанный способ, включает добавление соли двухвалентных переходных металлов к культуре клеток для снижения накопления лактата, ферментирование и извлечение полипептида.

Еще в одном воплощении настоящего изобретения, клетки получают из линии клеток млекопитающих.

Еще в одном воплощении настоящего изобретения, линию клеток млекопитающих выбирают из группы, включающей без ограничения клетки яичника китайского хомячка (СНО), NS0 и BHK.

Еще в одном воплощении настоящего изобретения, соли двухвалентных переходных металлов содержат металл, который выбирают из группы, включающей медь и цинк.

Еще в одном воплощении настоящего изобретения, соль меди представляет собой сульфат меди и соль цинка представляет собой сульфат цинка.

Еще в одном воплощении настоящего изобретения, соль добавляют в концентрации в диапазоне от примерно 0,2 мМ до примерно 0,4 мМ.

Еще в одном воплощении настоящего изобретения, полипептид выбирают из группы, включающей без ограничений антитела против VEGF-A, антитела против Her-2, антитела против CD6 и антитела против TNF.

Еще в одном воплощении настоящего изобретения, культивирование проводят в любой системе, которую выбирают из группы, включающей без ограничения культивирование с подпиткой, периодическое культивирование, культивирование во встряхиваемых колбах и в биореакторе.

В воплощении настоящего изобретения, настоящее изобретение относится к способам снижения накопления лактата с применением модифицированного способа культивирования клеток, включающего фазу роста клеток и фазу продукции полипептида.

Соответственно, настоящее изобретение обеспечивает способ получения полипептидов, показанный на примере получения моноклональных антител, способом со сниженным накоплением лактата.

Кроме того, в дальнейшем раскрытии показано, что снижение накопления лактата происходит в диапазоне от примерно 5% до примерно 40%.

Настоящее изобретение относится к способу получения моноклональных антител способом со сниженным накоплением лактата.

В воплощении настоящего изобретения, снижают количество накопленного лактата, которое в норме связано со стандартной процедурой получения.

Еще в одном воплощении настоящего изобретения, описан способ, в котором добавление солей двухвалентных переходных металлов снижает накопление лактата в системе с подпиткой.

В воплощении настоящего изобретения, соли двухвалентных переходных металлов включают соли цинка и меди.

Еще в одном воплощении настоящего изобретения, концентрация солей цинка и меди, примененных в культуральной среде, равно примерно на 0,4 мМ.

Еще в одном воплощении настоящего изобретения, соль двухвалентного переходного металла в случае меди представляет собой сульфат меди, и соль металла в случае цинка представляет собой сульфат цинка.

Еще в одном воплощении настоящего изобретения, концентрация солей двухвалентных переходных металлов указана как концентрация соли в культуральной среде.

Еще в одном воплощении настоящего изобретения, данные ионы металлов, цинка и меди, необходимы для активности ферментов, вовлеченных в реакции гликолиза и цикла трикарбоновых кислот, и, следовательно, добавление данных ионов улучшает общую метаболическую эффективность клеток, приводя к тому, что большая часть глюкозы полностью окисляется, следовательно, накопление лактата снижается.

Еще в одном воплощении настоящего изобретения, среда представляет собой среду определенного химического состава, которую выбирают из группы, включающей без ограничений и HyClone CDM4NS0, и HyClone CDM4Mab.

Еще в одном воплощении настоящего изобретения, клетки млекопитающих могут быть выбраны из группы, включающей без ограничений клетки яичника китайского хомячка (СНО), несекретирующие 0 клетки (NS0) и клетки почек новорожденного хомяка (BHK).

Еще в одном воплощении настоящего изобретения, полипептид может быть выбран из группы, включающей без ограничений антитела против VEGF-A, антитела против Her-2, антитела против CD6 и антитела против TNF.

Еще в одном воплощении настоящего изобретения, уровень лактата в среду анализируют с помощью устройства «YSI 7100 MBS Analyzer».

Еще в одном воплощении настоящего изобретения, снижение накопления лактата приводит к улучшению характеристик культуры в целом, поскольку поддержание рН, в целом, приводит к улучшению стабильности клеток. Добавление солей двухвалентных переходных металлов, например солей цинка/меди, снижает накопления лактата и, следовательно, рН среды также сохраняется.

В воплощении настоящего изобретения, соль двухвалентных переходных металлов также может быть определена как ионы двухвалентных переходных металлов.

Еще в одном воплощении настоящего изобретения, настоящее изобретение также относится к способу усовершенствования продукции белка, например крупномасштабной коммерческой продукции белка, например продукции антител.

Еще в одном воплощении настоящего изобретения, настоящее изобретение также относится к способам выращивания клеток в системе культивирования клеток, которая снижает накопление лактата в культуральной среде.

Еще в одном воплощении настоящего изобретения, добавление солей двухвалентных переходных металлов, т.е. солей цинка/меди дополнительно усиливает снижение накопления лактата от примерно 5% до примерно 40%.

Определение терминов:

В описании и в формуле настоящего изобретения, в соответствии с определениями, приведенными в настоящем документе, будет применена следующая терминология.

Термин «антитело» включает антитела или производные антител или их фрагменты, и характеристики антител также применяют к препаратам антитела настоящего изобретения. К фрагментам антител, функциональным эквивалентам или гомологам антител, относят любой полипептид, который включает связывающий домен иммуноглобулина или пептиды, имитирующие данный связывающий домен вместе с Fc-областью или областью, гомологичной Fc-области или, по меньшей мере, ее части. Химерные молекулы, включающие связывающий домен иммуноглобулина, или эквиваленты, слитые с другим полипептидом, также включены.

Типичные молекулы антител представляют собой интактные молекулы иммуноглобулина и те части иммуноглобулина, которые содержат паратоп, включая те части молекулы, которые известны как Fab, Fab′, F(ab′)2, Fc и F(v), а также структуру N-гликана.

Антитело описывают как функциональный компонент сыворотки, и этот термин часто относят или к набору молекул (антител или иммуноглобулинов, фрагментам и т.п.), или к одной молекуле (к молекуле антитела или молекуле иммуноглобулина). Молекула антитела способна связываться или взаимодействовать со специфической антигенной детерминантой (антигеном или эпитопом антигена), что, в свою очередь, может привести к индукции иммунологических эффекторных механизмов. Индивидуальную молекулу антитела обычно рассматривают как моноспецифическую, а композиция молекул антител может быть как моноклональной (т.е. состоящей из идентичных молекул антитела) или поликлональной (т.е. состоящей из разных молекул антител, реагирующих с одним и тем же или с различными эпитопами на одном и том же антигене или на отдельных, различных антигенах). Отдельные и различные молекулы антител, составляющие поликлональное антитело, могут быть названы «члены». Каждая молекула антитела обладает уникальной структурой, которая дает ей возможность специфически связываться с соответствующим ей антигеном, и все природные молекулы антител, в целом, имеют одинаковую основную структуру, состоящую из двух идентичных легких цепей и двух идентичных тяжелых цепей.

Как применены в настоящем документе, выражения «полипептид» или «полипептидный продукт» представляют собой синонимы терминов «белок» и «белковый продукт», соответственно, и, как это обычно понимают в данной области техники, относятся, по меньшей мере, к одной цепи аминокислот, последовательно связанных посредством пептидных связей. В определенных воплощениях, «представляющий интерес белок» или «представляющий интерес полипептид» или тому подобное представляет собой белок, кодируемый экзогенной молекулой нуклеиновой кислоты, которой была трансформирована клетка-хозяин. В определенных воплощениях, в которых экзогенная ДНК, которой была трансформирована клетка-хозяин, кодирует «представляющий интерес белок», последовательность нуклеиновой кислоты экзогенной DNA определяет последовательность аминокислот. В определенных воплощениях, «представляющий интерес белок» представляет собой белок, кодируемый молекулой нуклеиновой кислоты, которая эндогенна по отношению к клетке-хозяину. В определенных воплощениях, экспрессию такого эндогенного представляющего интерес белка изменяют путем трансфекции в клетку-хозяина молекулы экзогенной нуклеиновой кислоты, которая, например, может содержать одну или несколько регуляторных последовательностей и/или кодирует белок, который увеличивает экспрессию представляющего интерес белка.

В настоящем документе, термин «вариант антитела» относится к антителу, имеющему последовательность аминокислот, которая отличается от аминокислотной последовательности исходного антитела. Предпочтительно, вариант антитела включает вариабельный домен тяжелой цепи или вариабельный домен легкой цепи, имеющий аминокислотную последовательность, которая не встречается в природе. Такие варианты обязательно имеют менее чем 100% идентичности или сходства в последовательности с родительским антителом. В предпочтительном воплощении, вариант антитела будет иметь аминокислотную последовательность с от примерно 75% до менее чем 100% идентичности или сходства аминокислотной последовательности с аминокислотной последовательностью вариабельного домена или тяжелой, или легкой цепи исходного антитела, более предпочтительно, от примерно 80% до менее чем 100%, более предпочтительно, от примерно 85% до менее чем 100%, более предпочтительно, от примерно 90% до менее чем 100%, и наиболее предпочтительно, от примерно 95% до менее чем 100%. Идентичность или сходство по отношению к данной последовательности определяют в настоящем документе как процент аминокислотных остатков в последовательности-кандидате, который идентичен (т.е. тот же самый остаток) остаткам исходного антитела, после выравнивания последовательностей и введения, при необходимости, разрывов для достижения максимального процента идентичности последовательности.

Термины «среда», «среды», «среда для культивирования клеток» и «культуральная среда», как применены в настоящем документе, относятся к раствору, содержащему питательные вещества, которые питают растущие животные клетки, например клетки млекопитающих, и также могут относиться к среде вместе с клетками.

Предпочтительные клетки-хозяева млекопитающих представляют собой клетки яичника китайского хомячка (СНО). Способы и векторы для генетической модификации клеток и/или линий клеток для экспрессии представляющего интерес белка хорошо известны специалистам в этой области техники. Генно-инженерные методики включают, но не ограничиваются векторами для экспрессии, направленной гомологической рекомбинацией и активацией гена. Необязательно, белки экспрессируются под контролем гетерологичного элемента контроля, такого как, например, промотор, который в природе не контролирует продукцию данного полипептида. Например, промотор может представлять собой сильный вирусный промотор (например, CMV, SV40), который направляет экспрессию полипептида млекопитающего. Клетка-хозяин может или не может в норме продуцировать данный белок. Например, клетка-хозяин может представлять собой клетку СНО, которая была модифицирована генетическими способами так, чтобы продуцировать белок, это означает, что нуклеиновая кислота, кодирующая белок, была введена в клетку СНО.

Лактат, побочный продукт, генерируемый при росте клеток млекопитающих, потенциально токсичен для клеток. Накопление лактата влияет на буферную емкость среды, что приводит к снижению рН. Было показано, что лактат негативно воздействует не только на рост и продуктивность клеток, но также и на качество продукта в целом. Для снижения накопления лактата в культуральной среде было предпринято несколько подходов. Они включают рост клеток при низкой концентрации глюкозы, сверхэкспрессию пируватдекарбоксилазы и нокаут гена лактатдегидрогеназы-А (LDH-A).

Следующие примеры показывают, как способ может быть осуществлен путем добавления определенных солей двухвалентных переходных металлов для снижения накопления лактата при культивировании. Лактат снижается почти на 5-40% в течение цикла культивирования.

В воплощении настоящего изобретения, соль двухвалентных переходных металлов может также быть определена как ионы двухвалентных переходных металлов.

В воплощении настоящего изобретения, общеизвестные методики для выделения белков/антител из культуральных сред, которые могут быть применены, представляют собой ионообменную хроматографию, гель-фильтрационную хроматографию и аффинную хроматографию.

Еще в одном воплощении настоящего изобретения, в качестве предпочтительной методики для выделения антител из среды была применена методика аффинной хроматографии.

Следующие описания конкретных воплощений настоящего изобретения представлены для целей иллюстрации и описания. Они не предназначены для того, чтобы быть исчерпывающими или ограничивать изобретение определенными раскрытыми формами. С учетом вышеизложенных идей возможны различные модификации и вариации. Кроме того, многие модификации могут быть сделаны для адаптации конкретной ситуации, материала, состава вещества, способа, стадии или стадий способа к цели, духу и объему настоящего изобретения. Все такие модификации должны находиться в пределах объема прилагаемой формулы изобретения.

Далее, технология настоящей заявки будет детально представлена с помощью следующих примеров. Однако примеры не должны быть истолкованы как ограничивающие объем изобретения.

ПРИМЕРЫ:

Уровень лактата анализировали для всех экспериментов, представленных в приведенных ниже примерах, с помощью устройства «YSI 7100 MBS Analyzer». pH для всех приведенных ниже экспериментов, как указано в следующих примерах, поддерживали в диапазоне pH 6,85-7,2. Уровень кислорода также поддерживали путем взбалтывания в шейкер-инкубаторе. Во всех указанных ниже примерах, концентрация добавленной соли равна концентрации соли, присутствовавшей в среде. Температуру можно соответствующим образом изменять, на основании природы примененных клеток и прочих связанных параметров.

При осуществлении настоящего изобретения применяли две соли двухвалентных переходных металлов. Данные две соли двухвалентных переходных металлов представляют собой сульфат меди пентагидрат и сульфат цинка гептагидрат.

ПРИМЕР 1:

Пример 1(А)

Культивирование клеток осуществляли в режиме культуры с подпиткой. В культуре клеток, в качестве клеток-хозяев млекопитающих применяли клетки яичника китайского хомячка (СНО) и исходно поставляли культуральную среду HyClone CDM4NS0. Клетки СНО были генетически модифицированы так, чтобы производить антитела против VEGF-A. Соль сульфата меди пентагидрат добавляли в среду в концентрации, равной 0,4 мМ. Напротив, в контрольную среду никакой соли меди не добавляли. Производственный цикл ферментации начинали с исходной концентрации клеток, равной 0,3-0,45×106 клеток/мл при 37±1°C, первые 3-4 дня были отведены для роста клеток в периодической фазе. На следующей стадии температуру понижали до 31±1°C и цикл культивирования клеток продолжали до 7-го дня. В приведенной ниже таблице 1 показан уровень лактата, сниженный за время цикла культивирования клеток. Полученные антитела против VEGF-A затем выделяли из среды, применяя методику аффинной хроматографии.

В контроле накопление лактата снизилось примерно на 61%, в то же время в среде с добавленной солью накопление лактата снизилось примерно на 87,5%. Настоящий пример показал дополнительное снижение накопления лактата примерно на 26,5% в присутствии указанной соли.

На фигуре 1(А) показано снижение концентрации лактата в культуральной среде.

Пример 1(В)

Культивирование клеток осуществляли в режиме культуры с подпиткой. В культуре клеток, в качестве клеток-хозяев млекопитающих применяли клетки яичника китайского хомячка (СНО) и исходно поставляли культуральную среду HyClone CDM4NSO. Клетки СНО были генетически модифицированы так, чтобы производить антитела против VEGF-A. Соль сульфата цинка гептагидрат добавляли в среду в концентрации, равной 0,4 мМ. Напротив, никакой соли цинка в контрольную среду не добавляли. Производственный цикл ферментации начинали с исходной концентрации клеток, равной 0,3-0,45×106 клеток/мл при 37±1°C, первые 3-4 дня были отведены для роста клеток в фазе периодической культуры. На следующей стадии, температуру понижали до 31±1°C и цикл культивирования клеток продолжали до 7-го дня. В приведенной ниже таблице 2 показано, что уровень лактата снизился за время цикла культивирования. Полученные антитела против VEGF-A затем выделяли из среды, применяя методику аффинной хроматографии.

В контроле накопление лактата снизилось примерно на 61,32%, в то же время в среде с добавленной солью накопление лактата снизилось примерно на 72,89%. Настоящий пример показал дополнительное снижение накопления лактата примерно на 11,57% в присутствии указанной соли.

На фигуре 1(В) показано снижение концентрации лактата в культуральной среде.

ПРИМЕР 2:

Пример 2А:

Культивирование клеток осуществляли в режиме культуры с подпиткой. В культуре клеток, в качестве клеток-хозяев млекопитающих применяли клетки яичника китайского хомячка (СНО) и исходно поставляли культуральную среду HyClone CDM4NS0. Клетки СНО были генетически модифицированы так, чтобы производить антитела против Her-2. Соль сульфата меди пентагидрат добавляли в среду в концентрации, равной 0,4 мМ. В контрольную среду, напротив, никакой соли меди не добавляли. Производственный цикл ферментации начинали с исходной концентрации клеток, равной 0,3-0,45×106 клеток/мл при 37±1°C, первые 3-4 дня были отведены для роста клеток в фазе периодической культуры. На следующей стадии температуру понижали до 31±1°C и цикл культивирования клеток продолжали до 7-го дня. В приведенной ниже таблице 3 показан уровень лактата, сниженный за время цикла культивирования. Полученные антитела против Her-2 затем выделяли из среды, применяя методику аффинной хроматографии.

В контроле накопление лактата снизилось примерно на 50,5%, в то же время в среде с добавленной солью накопление лактата снизилось примерно на 65%. Настоящий пример показал дополнительное снижение накопления лактата примерно на 14,5% в присутствии указанной соли.

На фигуре 2(А) показано снижение концентрации лактата в культуральной среде.

Пример 2В:

Культивирование клеток осуществляли в режиме культуры с подпиткой. В культуре клеток, в качестве клеток-хозяев млекопитающих применяли клетки яичника китайского хомячка (СНО) и исходно поставляли культуральную среду HyClone CDM4NS0. Клетки СНО были генетически модифицированы так, чтобы производить антитела против Her-2. Соль сульфата цинка гептагидрат добавляли в среду в концентрации, равной 0,4 мМ. Напротив, в контрольную среду никакой соли цинка не добавляли. Производственный цикл ферментации начинали с исходной концентрации клеток, равной 0,3-0,45×106 клеток/мл при 37±1°C, первые 3-4 дня были отведены для роста клеток в фазе периодической культуры. На следующей стадии температуру понижали до 31±1°C и цикл культивирования клеток продолжали до 7-го дня. В приведенной ниже таблице 4 показан уровень лактата, сниженный за время цикла культивирования. Полученные антитела против Her-2 затем выделяли из среды, применяя методику аффинной хроматографии.

В контроле накопление лактата снизилось примерно на 34,5%, в то же время в среде с добавленной солью накопление лактата снизилось примерно на 64,88%. Настоящий пример показал дополнительное снижение накопления лактата примерно на 30,38% в присутствии указанной соли.

На фигуре 2(В) показано снижение концентрации лактата в культуральной среде.

ПРИМЕР 3:

Культивирование клеток осуществляли в режиме культуры с подпиткой. В культуре клеток, в качестве клеток-хозяев млекопитающих применяли клетки яичника китайского хомячка (СНО) и исходно поставляли культуральную среду HyClone CDM4NS0. Клетки СНО были генетически модифицированы так, чтобы производить антитела против CD6. Соль сульфата цинка гептагидрат добавляют в среду в концентрации, равной 0,4 мМ. Напротив, в контрольную среду никакой соли цинка не добавляли. Производственный цикл ферментации начинали с исходной концентрации клеток, равной 0,3-0,45×106 клеток/мл при 37±1°C, первые 3-4 дня были отведены для роста клеток в фазе периодической культуры. На следующей стадии температуру понижали до 31±1°C и цикл культивирования клеток продолжали до 7-го дня. В приведенной ниже таблице 5 показан уровень лактата, сниженный за время цикла культивирования. Полученные антитела против CD6 затем выделяли из среды, применяя методику аффинной хроматографии.

Таблица 5 Возраст (в часах) Контроль-Остаточный лактат (мМ) С солью цинка-Остаточный лактат (мМ) 72 18 18 96 11,2 11,2 120 9,8 6,2

144 4,6 3 168 5,3 3,2

В контроле накопление лактата снизилось примерно на 70,55%, в то же время в среде с добавленной солью накопление лактата снизилось примерно на 82,22%. Настоящий пример показал дополнительное снижение накопления лактата примерно на 11,67% в присутствии указанной соли.

На фигуре 3 показано снижение концентрации лактата в культуральной среде.

ПРИМЕР 4:

Эксперимент для 4(А)

Культивирование клеток осуществляли в режиме культуры с подпиткой. В культуре клеток, в качестве клеток-хозяев млекопитающих применяли клетки яичника китайского хомячка (СНО) и исходно поставляли культуральную среду HyClone CDM4NS0. Клетки СНО были генетически модифицированы так, чтобы производить антитела к TNF. Соль сульфат меди пентагидрат также добавляли в среду в концентрации, равной 0,4 мМ. В контрольную среду, напротив, никакой соли меди не добавляли. Производственный цикл ферментации начинали с исходной концентрации клеток, равной 0,3-0,45×106 клеток/мл при 37±1°C, первые 3-4 дня были отведены для роста клеток в фазе периодической культуры. На следующей стадии температуру понижали до 31±1°C и цикл культивирования клеток продолжали до 7-го дня. В приведенной ниже таблице 6 показан уровень лактата, сниженный за время цикла культивирования. Полученные антитела к TNF затем выделяли из среды, применяя методику аффинной хроматографии.

В контроле накопление лактата снизилось примерно на 15,38%, в то же время в среде с добавленной солью накопление лактата снизилось примерно на 28,43%. Настоящий пример показал дополнительное снижение накопления лактата примерно на 13,05% в присутствии указанной соли.

На фигуре 4А показано снижение концентрации лактата в культуральной среде.

Эксперимент для 4(В)

Культивирование клеток осуществляли в режиме культуры с подпиткой. В культуре клеток, в качестве клеток-хозяев млекопитающих применяли клетки яичника китайского хомячка (СНО) и исходно поставляли культуральную среду HyClone CDM4NS0. Клетки СНО были генетически модифицированы так, чтобы производить антитела к TNF. Соль сульфата цинка гептагидрат также добавляли в среду в концентрации, равной 0,4 мМ. Напротив, в контрольную среду никакой соли цинка не добавляли. Производственный цикл ферментации начинали с исходной концентрации клеток, равной 0,3-0,45×106 клеток/мл при 37±1°C, первые 3-4 дня были отведены для роста клеток в фазе периодической культуры. На следующей стадии температуру понижали до 31±1°C и цикл культивирования клеток продолжали до 7-го дня. В приведенной ниже таблице 7 показан уровень лактата, сниженный за время цикла культивирования. Полученные антитела против TNF затем выделяли из среды, применяя методику аффинной хроматографии.

В контроле накопление лактата снизилось примерно на 17,37%, в то же время в среде с добавленной солью накопление лактата снизилось примерно на 23,46%. Настоящий пример показал дополнительное снижение накопления лактата примерно на 6,09% в присутствии указанной соли.

На фигуре 4В показано снижение концентрации лактата в культуральной среде.

ПРИМЕР 5:

Эксперимент для 5(А)

Культивирование клеток осуществляли в режиме культуры с подпиткой. В культуре клеток, в качестве клеток-хозяев млекопитающих применяли клетки яичника китайского хомячка (СНО) и исходно поставляли культуральную среду HyClone CDM4NS0. Клетки СНО были генетически модифицированы так, чтобы производить антитела против VEGF-A. Соль сульфат меди пентагидрат также добавляли в среду в концентрации, равной 0,2 мМ. В контрольную среду, напротив, никакой соли меди не добавляли. Производственный цикл ферментации начинали с исходной концентрации клеток, равной 0,3-0,45×106 клеток/мл при 37±1°C, первые 3-4 дня были отведены для роста клеток в фазе периодической культуры. На следующей стадии температуру понижали до 31±1°C и цикл культивирования клеток продолжали до 7-го дня. В приведенной ниже таблице 8 показан уровень лактата, сниженный за время цикла культивирования. Полученные антитела против VEGF-A затем выделяли из среды, применяя методику аффинной хроматографии.

В контроле накопление лактата снизилось примерно на 79,23%, в то же время в среде с добавленной солью накопление лактата снизилось примерно на 85,40%. Настоящий пример показал дополнительное снижение накопления лактата примерно на 6,17% в присутствии указанной соли.

На фигуре 5А показано снижение концентрации лактата в культуральной среде.

Эксперимент для 5(В)

Культивирование клеток осуществляли в режиме культуры с подпиткой. В культуре клеток, в качестве клеток-хозяев млекопитающих применяли клетки яичника китайского хомячка (СНО) и исходно поставляли культуральную среду HyClone CDM4NS0. Клетки СНО были генетически модифицированы так, чтобы производить антитела против VEGF-A. Соль сульфата цинка гептагидрат также добавляли в среду в концентрации, равной 0,2 мМ. Напротив, в контрольную среду никакой соли цинка не добавляли. Производственный цикл ферментации начинали с исходной концентрации клеток, равной 0,3-0,45×106 клеток/мл при 37±1°C, первые 3-4 дня были отведены для роста клеток в фазе периодической культуры. На следующей стадии температуру снижали до 31±1°C и цикл культивирования клеток продолжали до 7-го дня. В приведенной ниже таблице 9 показан уровень лактата, сниженный за время цикла культивирования. Полученные антитела против VEGF-A затем выделяли из среды, применяя методику аффинной хроматографии.

В контроле накопление лактата снизилось примерно на 79,23%, в то же время в среде с добавленной солью накопление лактата снизилось примерно на 88,41%. Настоящий пример показал дополнительное снижение накопления лактата примерно на 9,18% в присутствии указанной соли.

На фигуре 5В показано снижение концентрации лактата в культуральной среде.

ПРИМЕР 6:

Культивирование клеток осуществляли в режиме культуры с подпиткой. В культурах клеток в качестве клеток-хозяев млекопитающих применяли клетки яичника китайского хомячка (СНО) и исходно поставляли культуральную среду HyClone CDM4NS0. В среду также добавляли соль сульфата магния, примененную в качестве негативного контроля в концентрации, равной 0,4 мМ. В контрольную среду, напротив, не добавляли никакой соли сульфата магния. Производственный цикл ферментации начинали с исходной концентрации клеток, равной 0,3-0,45×106 клеток/мл при 37±1°C, первые 3-4 дня были отведены для роста клеток в фазе периодической культуры. На следующей стадии температуру снижали до 31±1°C и цикл культивирования клеток продолжали до 7-го дня.

На фигуре 6 показано снижение концентрации лактата в культуральной среде.

ПРИМЕР 7:

Культивирование клеток осуществляли в режиме культуры с подпиткой. В культуре клеток в качестве клеток-хозяев млекопитающих применяли клетки яичника китайского хомячка (СНО) и исходно поставляли культуральную среду HyClone CDM4Mab. Соль сульфата цинка гептагидрат также добавляли в среду в концентрации, равной примерно 0,3 мМ. Напротив, в контрольную среду не добавляли никакой соли сульфата цинка. Производственный цикл ферментации начинали с исходной концентрации клеток, равной 0,3-0,45×106 клеток/мл при 37±1°C, первые 3-4 дня были отведены для роста клеток в фазе периодической культуры. Следующая стадия включала понижение температуры до 31±1°C и продолжение цикла культивирования клеток до 7-го дня.

На фигуре 7 показано снижение концентрации лактата в культуральной среде.

Похожие патенты RU2592680C2

название год авторы номер документа
СПОСОБ СНИЖЕНИЯ ГЕТЕРОГЕННОСТИ АНТИТЕЛ И СПОСОБ ПОЛУЧЕНИЯ СООТВЕТСТВУЮЩИХ АНТИТЕЛ 2012
  • Сривастава Ручика
  • Хемдев Снеха Лакшмандас
  • Бхатнагар Анкур
  • Десан Сараванан
  • Джоел Ануй
  • Айер Хариш
RU2580020C2
МОДУЛИРОВАНИЕ КЛЕТОЧНОГО РОСТА И ГЛИКОЗИЛИРОВАНИЯ ПРИ ПРОИЗВОДСТВЕ РЕКОМБИНАНТНЫХ ГЛИКОПРОТЕИНОВ 2015
  • Попп Оливер
  • Бокамп Никола
  • Драбнер Георг
  • Эсслингер Штефани
RU2712562C2
СПОСОБ ПОВЫШЕНИЯ УДЕЛЬНОЙ СКОРОСТИ И ПРОДУЦИРОВАНИЯ В ЭУКАРИОТИЧЕСКИХ КЛЕТКАХ 2015
  • Попп Оливер
RU2725191C2
ПРИМЕНЕНИЕ НИЗКОЙ ТЕМПЕРАТУРЫ И/ИЛИ НИЗКОГО pН В КУЛЬТУРЕ КЛЕТОК 2008
  • Гомес Хосе Манюэль
  • Хиллер Грегори Уолтер
RU2478702C2
Синтетическая ДНК, кодирующая антимюллеров гормон человека, содержащий ее экспрессионный вектор pTVK4pu/MISOPT и штамм клеток яичников китайского хомячка CHO-MIS - продуцент рекомбинантного антимюллерового гормона человека 2016
  • Петров Александр Владимирович
  • Карасев Максим Михайлович
  • Кудлинг Татьяна Викторовна
  • Пигарева Наталья Васильевна
  • Сергеева Валерия Евгеньевна
  • Трофимов Александр Викторович
  • Ищенко Александр Митрофанович
  • Горбунов Алексей Андреевич
  • Вахрушев Андрей Валентинович
  • Симбирцев Андрей Семенович
RU2616273C1
СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНОГО ПОЛИПЕПТИДА 2011
  • Йостен Кристоф Э.
  • Ляйст Кристиан
  • Шмидт Йорг
RU2577972C2
УЛУЧШЕНИЕ ТИТРА ПОЛИПЕПТИДА ФАКТОРА VIII В КЛЕТОЧНЫХ КУЛЬТУРАХ 2008
  • Йонсен Лауст Бруун
  • Хильден Ида
  • Болт Герт
  • Стеенструп Томас Док
RU2477318C2
СПОСОБ ПОЛУЧЕНИЯ АНТИТЕЛА ИЛИ ЕГО ФРАГМЕНТА С ПОДПИТКОЙ (ВАРИАНТЫ) 2007
  • Пла Ицкоатль А
  • Матук Джозеф К
  • Фанн Джон К
  • Шульц Кристоф
  • Рой Николь А
  • Брутон Дэвид Ф
  • Макинтайр Джеймс
  • Чан Юй-Сиан Дэвид
  • Сеевестер Томас
RU2518289C2
ДОБАВЛЕНИЕ ЖЕЛЕЗА ДЛЯ УЛУЧШЕНИЯ КУЛЬТИВИРОВАНИЯ КЛЕТОК 2012
  • Ванг Венге
  • Луан Йен-Танг
  • Дрэпо Денис
  • Ноулан Райан П.
RU2663794C2
Композиция для предотвращения агрегирования и повышения однородности культуры, увеличения продуктивности клеточных линий-продуцентов рекомбинантных белков 2018
  • Кирпичников Михаил Петрович
  • Долгих Дмитрий Александрович
  • Гаспарян Марине Эдуардовна
  • Аргентова Виктория Витальевна
  • Алиев Теймур Кантамирович
RU2731988C2

Иллюстрации к изобретению RU 2 592 680 C2

Реферат патента 2016 года СПОСОБ СНИЖЕНИЯ НАКОПЛЕНИЯ ЛАКТАТА ПРИ КУЛЬТИВИРОВАНИИ И СПОСОБ ПОЛУЧЕНИЯ АНТИТЕЛА

Группа изобретений относится к биотехнологии. Предложены способ снижения накопления лактата от 5% до 40% при культивировании клеток млекопитающих и способ получения антитела. Для снижения накопления лактата от 5% до 40% к культивируемым клеткам млекопитающих добавляют соль цинка в концентрации в диапазоне от 0,2 мМ до 0,4 мМ. В способе получения антитела добавляют соль цинка в концентрации от 0,2 мМ до 0,4 мМ для снижения накопления лактата от 5% до 40% к культивируемым клеткам млекопитающих, продуцирующим указанное антитело, и извлекают антитело. 2 н. и 7 з.п. ф-лы, 7 ил., 9 табл., 7 пр.

Формула изобретения RU 2 592 680 C2

1. Способ снижения накопления лактата от 5% до 40% при культивировании клеток млекопитающих, где указанный способ включает добавление к культуре клеток млекопитающих соли цинка в концентрации в диапазоне от 0,2 мМ до 0,4 мМ.

2. Способ по п.1, в котором соль цинка представляет собой сульфат цинка.

3. Способ по п.1, в котором линию клеток млекопитающих выбирают из группы, включающей без ограничения клетки яичника китайского хомячка (СНО), NS0 (клетки несекретирующие 0) и BHK (клетки почки новорожденного хомяка).

4. Способ по п.1, в котором культивирование проводят в системе, которую выбирают из группы, включающей без ограничения культивирование с подпиткой, периодическое культивирование, культивирование во встряхиваемых колбах и в биореакторе.

5. Способ получения антитела, где указанный способ включает следующее:
a. добавление к культивируемым клеткам млекопитающих, которые продуцируют указанное антитело, соли цинка в концентрации в диапазоне от 0,2 мМ до 0,4 мМ для снижения накопления лактата от 5% до 40%; и
b. ферментирование и извлечение указанного антитела.

6. Способ по п.5, в котором линию клеток млекопитающих выбирают из группы, включающей без ограничения клетки яичника китайского хомячка (СНО), NS0 и BHK.

7. Способ по п.5, в котором соль цинка представляет собой сульфат цинка.

8. Способ по п.5, в котором антитело выбирают из группы, включающей без ограничений антитела против VEGF-A, антитела против Her-2, антитела против CD6 и антитела к TNF.

9. Способ по п.5, в котором способ культивирования осуществляют в любой системе, которую выбирают из группы, включающей без ограничения культивирование с подпиткой, периодическое культивирование, культивирование во встряхиваемых колбах и в биореакторе.

Документы, цитированные в отчете о поиске Патент 2016 года RU2592680C2

WO 2010125187 A2, 04.11.2010
PELLETIER B
C
"Effect of copper sulfate addition on the growth and productivity of a serum-free CHO cell culture producing a recombinant antibody", 229th ACS National Meeting, in San Diego, CA, March 13-17, 2005, PAGE BIOT - 232
RUSSELL B
A
"Identification of copper as the root cause of lactate differences between

RU 2 592 680 C2

Авторы

Сривастава, Ручика

Хемдев, Снеха, Лакшмандас

Бхатнагар, Анкур

Десан, Сараванан

Джоел, Ануй

Айер, Хариш

Раджа, Вана

Рао, Лаванья

Даты

2016-07-27Публикация

2012-04-27Подача