СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОСТРУКТУР, МОДИФИЦИРОВАННЫХ МЕТАЛЛОМ, ЛИГАТУРА ДЛЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ АЛЮМИНИЯ ИЛИ АЛЮМИНИЕВОГО СПЛАВА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ Российский патент 2016 года по МПК C01B31/02 B82B1/00 B82B3/00 B82Y30/00 B82Y40/00 

Описание патента на изобретение RU2593875C2

Изобретение относится к технологиям изготовления модифицированных металлическими наночастицами углеродных наноструктур, а также к композитным материалам, в частности лигатурам и технологиям получения таких лигатур, при этом оно может использоваться преимущественно в химической и металлургической отраслях промышленности,

Углеродные наноструктуры, в частности нанотрубки и нановолокна, вызывают значительный интерес в связи с их уникальными свойствами: чрезвычайной прочностью, особыми электрическими свойствами, высокой эффективностью при использовании в качестве проводников тепла, коррозионной стойкостью и многими другими. Они способны придавать новые свойства уже известным материалам даже при небольшом их добавлении и незаменимы в создании новых композиционных материалов, в том числе на основе металлов.

Нанокомпозитные металлы, в составе которых имеются углеродные наноструктуры, характеризуются повышенными прочностью, электропроводностью, теплопроводностью, стойкостью к коррозии. Однако получение таких материалов сопряжено с проблемой внедрения углеродных наноструктур в металлическую матрицу, что обусловлено инертностью углеродной поверхности наноструктур. Внешняя поверхность углеродных наноструктур образована базальными плоскостями графита, в которых атомы углерода прочно связаны между собой ковалентными связями. Расстояния между атомами углерода в базальной плоскости графита составляет 0.142 нм, а расстояние между базальными плоскостями - 0.335 нм. Связь между базальными плоскостями графита осуществляется силами Ван-дер-Ваальса. Это является причиной инертности углеродной поверхности наноструктур. Для улучшения свойств металлической матрицы необходимо, чтобы между поверхностью углеродной наноструктуры и металлом происходило эффективное химическое взаимодействие. Без этого смешение углеродных наноструктур с расплавленным металлом практически невозможно. Чтобы обеспечить упомянутое химическое взаимодействие металла с поверхностью наноструктуры, эту поверхность модифицируют различными металлами, например серебром, или палладием, или медью, или никелем, или иными металлами.

На фиг. 1 представлена фотография модифицированных углеродных нанотрубок с наночаетицами металла на их поверхности, где 1 - углеродная нанотрубка, 2 - наночастица металла.

Известны различные способы модифицирования поверхности нанотрубок определенными металлами. Так, известен способ приготовления углеродных нанотрубок, модифицированных серебряными наночастицами, который состоит из нескольких последовательно выполняемых стадий, на первой из которых получают дисперсию нанотрубок в полиоле, на второй стадии смешивают эту дисперсию, нагретую до 120-160°C, с растворенной в полиоле солью серебра так, что соль серебра конвертируется в металлические наночастицы, а на третьей стадии из смеси убирают полиол, а наночастицы серебра оседают и растут на углеродной поверхности нанотрубок [патент Китая №101683978, МПК С01В 31/02, B01J 23/50, В82В 3/00].

Этот способ модифицирования поверхности углеродных нанотрубок наночастицами металла принят за прототип изобретения. Он применим только для изготовления нанотрубок, допированных серебром. Это является его недостатком, так как достаточно часто возникает потребность в углеродных нанотрубках, допированных разными металлами.

Предлагаемое изобретение решает задачу создания универсального способа модифицирования поверхности углеродных нанотрубок наночастицами металла, который позволял бы изготавливать нанотрубки с наночастицами разных металлов.

Поставленная задача решается тем, что предлагается способ модифицирования поверхности углеродных нанотрубок наночастицами металла, включающий следующие последовательно выполняемые стадии:

- исходные углеродные наноструктуры: нановолокна или нанотрубки, обрабатывают кислотой при температуре 20-100°С;

- обработанные кислотой углеродные наноструктуры промывают и сушат;

- высушенные углеродные наноструктуры пропитывают водным раствором соли соответствующего металла;

- водный раствор соли соответствующего металла выпаривают из углеродных наноструктур при 90-120°C с получением композита «углеродная наноструктура - соль соответствующего металла»;

- композит «углеродная наноструктура - соль соответствующего металла» нагревают в инертной среде до температуры 550-650°С и восстанавливают при этой температуре в потоке метано-водородной смеси.

Металл выбирают из ряда: серебро, или железо, или медь, или никель, или кобальт, или цинк, или рутений, или родий, или палладий, или золото, или платина, или магний, или олово.

Кислоту преимущественно выбирают из ряда: азотная, и/или соляная, и/или серная.

Целесообразно обработку кислотой осуществлять не менее 20 мин.

Солью металла может быть нитрат или карбонат.

Сушку композита «углеродная наноструктура - соль соответствующего металла» целесообразно осуществлять при 100-180°С.

Как правило, обработанные кислотой углеродные нанотрубки или нановолокна промывают водой.

Инертная среда может состоять из азота, аргона или других инертных газов.

Восстановление проводят в метане или метано-водородной смеси.

Предлагаемые модифицированные наноструктуры получают согласно следующему (на примере углеродных нанотрубок).

Углеродные нанотрубки обрабатывают кислотой серной, или азотной, или их смесью, или другими кислотами при температуре 20-100°С в течение, например, 20 мин. Обработанные нанотрубки промывают нейтральным реагентом, например дистиллированной водой, и сушат при температуре 100-120°С не менее 30 мин. Обработанные кислотой, промытые и высушенные нанотрубки пропитывают водным раствором соли соответствующего металла, например водным раствором нитрата серебра, или нитрата железа, или нитрата никеля, или других подходящих солей. После этого с помощью магнитной мешалки с подогревом из полученной суспензии выпаривают жидкость при температуре 90-100°C с получением композита: «углеродная наноструктура - соль соответствующего металла».

Полученные нанотрубки сушат воздухом при температуре порядка 100-180°С в течение не менее 30 мин (длительность сушки зависит от объема образца). После этого высушенные нанотрубки нагревают в среде аргона до 550-650°С и восстанавливают образец при этой температуре не менее 30 мин. При этом нанесенный на поверхность углеродных нанотрубок нитрат металла разлагается с образованием оксида металла и восстанавливается до металла. В результате получают нанотрубки, на поверхности которых располагаются наночастицы целевого металла, как показано на фиг. 1.

Полученные нанотрубки по сравнению с исходными имеют модифицированную металлическими наночастицами поверхность, обладающую сродством к основному металлу (в нашем случае алюминию), что позволяет смешивать их с ним. Упомянутая ранее инертность углеродной поверхности в таких нанотрубках устранена. Между поверхностью углеродной нанотрубки и металлом возникает химическое взаимодействие, невозможное без модификации поверхности нанотрубок, что позволяет равномерно внедрить нанотрубки в металлическую матрицу.

Все вышесказанное в равной степени относится и к углеродному нановолокну.

Описанные выше углеродные наноструктуры, модифицированные наночастицами металлов, могут использоваться при приготовлении металлических нанокомпозитных материалов, в частности материалов на основе алюминия.

Детали, выполненные из композитных материалов на основе алюминия и содержащие в своем составе углеродные нанотрубки, характеризуются повышенной прочностью, термической стойкостью, твердостью и износостойкостью. Это позволяет, например, заменять стальные детали автомобилей на детали из композитного материала на основе алюминия, которые при равных характеристиках имеют в несколько раз меньший вес.

Известны различные способы получения композитных материалов на основе алюминиевой матрицы.

Например, известен способ получения металломатричного материала [заявка США №20120164429, МПК В32/В 15/14], в соответствии с которым, углеродные нанотрубки выращивают на неорганических волокнах, на поверхность которых предварительно нанесен катализатор. Далее этими волокнами с углеродными нанотрубками армируют металлическую матрицу, получая таким образом металломатричный композитный материал. Недостатком описанного способа получения композитного материала является анизотропия механических свойств полученного материала.

Известен также способ получения композитного материала на основе алюминиевой матрицы с углеродными нанотрубками, в соответствии с которым углеродные нанотрубки очищают и смешивают с порошком алюминия таким образом, чтобы их содержание в порошковой смеси составляло 0,01-5% масс., затем порошковую смесь подвергают холодному изостатическому прессованию с получением брикета, после чего проводят горячее прессование этого брикета в атмосфере воздуха и затем проводят горячую экструзию [заявка Китая №1827827, МКП B22F 3/14, С01В 31/02, С22С 45/08]. Недостатком этого способа является невозможность равномерного смешения углеродных нанотрубок и порошка алюминия, наличие на поверхности частиц алюминия оксидной пленки, что отрицательно сказывается на свойствах конечного материала.

Известен способ получения композитного материала на основе металлической матрицы с наполнителем в виде углеродных нанотрубок, в соответствии с которым углеродные нанотрубки очищают и функционализируют гидроксильными, или карбоксильными, или аминогруппами, или альдегидными группами, затем фильтруют, помещают в жидкость и обрабатывают ультразвуком в течение 10-30 минут, получая суспензию из нанотрубок [заявка США №20110180968, МКП В29С 45/00, C07F 13/00]. В полученную суспензию добавляют металлический порошок и повторно проводят обработку суспензии ультразвуком. После этого суспензию отстаивают и фильтруют для отделения жидкости и сушат в вакуумной печи. Затем смесь углеродных нанотрубок с порошком металла помещают в установку для горячего прессования и прессуют при давлении 50-100 МПа и температуре 300-400°С в атмосфере инертного газа, после чего охлаждают полученный материал до комнатной температуры. Недостатком описанного способа является то, что на стадии смешивания порошка металла и суспензии углеродных нанотрубок не возникает достаточно прочных адгезионных связей между ними, поскольку взаимодействие осуществляется за счет электростатических сил. Кроме того, получение материала по описанному способу приведет к тому, что углеродные нанотрубки в композите находятся только на границах зерен спеченных частиц металла.

Приведенные выше способы получения нанокомпозитного материала на основе алюминия относятся к порошковой металлургии. Они достаточно затратные и, главное, не могут быть включены в традиционный технологический процесс получения алюминия.

Известен материал на основе алюминиевой матрицы, содержащий углеродные наноструктуры, в частности нанотрубки и нановолокна [патент США №8287622, МПК С22В 21/06]. Для его приготовления алюминий приводят в полутвердое состояние и смешивают с углеродными нанотрубками, тщательно их перемешивая, затем эту смесь нагревают до жидкого состояния алюминия и диспергируют нанотрубки в ней с помощью ультразвука.

Этот материал и способ его получения приняты за прототип изобретения.

Недостатком прототипа является недостаточная однородность алюминиевого композиционного материала и сложная технология его изготовления, а также невозможность получения композиционного материала в рамках традиционного технологического цикла производства алюминия.

Изобретение решает задачу упрощения способа получения композиционных материалов на основе алюминия или его сплава и возможности осуществления этого способа в рамках традиционного технологического цикла производства алюминия.

Поставленная задача решается тем, что предлагается лигатура для приготовления композиционных материалов на основе алюминия или алюминиевого сплава, содержащая алюминий или его сплав и углеродные наноструктуры: нанотрубки или нановолокна, при их содержании, масс. %:

алюминий или алюминиевый сплав 80-99,85 углеродные наноструктуры 0,1-10 металл из ряда: серебро, или железо, или медь, или никель, или кобальт, или цинк, или рутений, или родий, или палладий, или золото, или платина, или магний, или олово 0,05-10

причем углеродные наноструктуры модифицированы наночастицами по меньшей мере одного из названных металлов.

Под лигатурой здесь понимается композитный материал, в состав которого входят алюминий или его сплав и углеродные наноструктуры в большой концентрации и который используется для получения композитного материала заданного состава путем введения его в расплавленный металл при производстве алюминия или его сплава.

Предлагается также способ получения лигатуры приведенного выше состава для изготовления композиционных материалов на основе алюминия, по которому углеродные нановолокна или нанотрубки, модифицированные металлами, смешивают с металлическим порошком и полученную смесь механически активируют, далее мехактивированную смесь смешивают с расплавленным алюминием путем размещения названной мехактивированной смеси между первым и вторым пенокерамическими фильтрами и последовательного пропускания расплавленного алюминия через первый фильтр, мехактивированную смесь и второй фильтр.

Углеродные наноструктуры, модифицированные наночастицами металлов, смешивают с порошком металла из ряда: серебро, или железо, или медь, или никель, или кобальт, или цинк, или рутений, или родий, или палладий, или золото, или платина, или магний, или олово.

Этими же металлами могут быть модифицированы используемые углеродные наноструктуры.

Мехактивированная смесь может быть спрессована в таблетки.

На фиг. 2 приведена схема получения лигатуры, где 3 - первый фильтр, 4 - мехактивированная смесь металла и углеродных нанотрубок или нановолокон, 5 - второй фильтр.

Процесс осуществляют следующим образом (на примере углеродных нанотрубок).

Углеродные нанотрубки, поверхность которых модифицирована наночастицами металла, например серебра, смешивают с металлическим, например серебряным, порошком. Полученную смесь подвергают мехактивации, например, в шаровой мельнице. В результате получают композиционный порошок, включающий частицы серебра и углеродные наноструктуры. Он может быть спрессован в таблетки для удобства манипуляций с ним.

Спрессованный в таблетку композитный материал или непосредственно сам углеродно-серебряный порошок помещают между двумя керамическими фильтрами, как показано на фиг. 2. Первый фильтр 3 устанавливают выше таблетки из мехактивированной смеси 4, второй фильтр 5 устанавливают ниже таблетки.

Для получения лигатуры на основе алюминия или его сплава расплавленный металл подают сверху вниз через первый керамический фильтр, затем - через таблетку из мехактивированной смеси и далее - через второй фильтр. При такой организации процесса происходит очищение расплавленного алюминия в керамических фильтрах и равномерное распределение углеродных наноструктур в объеме жидкого алюминия. Таким образом, может быть получена лигатура с любым содержанием углеродных наноструктур в ней. Также лигатура содержит металл, который влияет на свойства алюминия, например, как здесь указано, серебро. Это серебро поступает при приготовлении лигатуры в расплав из мехактивированной смеси, а часть - с поверхности наноструктур. В объеме полученной лигатуры могут содержаться как модифицированные металлом наноструктуры, так и немодифицированные.

Следует заметить, что при модифицировании наноструктур и смешивании их с металлом может использоваться как один и тот же металл, так и разные металлы.

Полученная лигатура может храниться в твердом виде, например, в форме таблеток, которые предназначены для погружения в расплавленный алюминий в традиционном технологическом процессе его производства. В результате получение композитного материала на основе алюминия с содержанием углеродных наноструктур и легирующих металлов проводится в традиционном процессе и не требует внесения в него изменений.

Пример 1

10 г одностенных углеродных нанотрубок (УНТ) заливают «царской водкой» (100 мл) и подвергают нагреву до температуры 100°С и одновременному перемешиванию на магнитной мешалке с подогревом в течение 30 мин. Затем УНТ отфильтровывают и промывают в дистиллированной воде до нейтрального рН. После кислотной обработки УНТ засыпают в раствор 10 г нитрата серебра в 100 мл воды и выпаривают раствор при нагреве до 90-100°С. Композит «УНТ - нитрат серебра» сушат на воздухе при температуре 180°С в течение 30 мин, загружают в проточный реактор и нагревают в инертной среде до температуры 600°С в течение 30 мин, а затем (УНТ-Ag2O) композиционный материал восстанавливают в метано-водородной среде (10 литров в час СН4 - 10 литров в час Н2) при температуре 600°С в течение 30 мин. После восстановления получают углеродные нанотрубки, модифицированные наночастицами серебра (УНТ-25% Ag).

Углеродные нанотрубки, модифицированные металлическим серебром, в количестве 3 г (2,4 г УНТ-0,6 г Ag) смешивают с 12 г металлического серебра. Полученную смесь подвергают мехактивации в планетарной мельнице в течение 3 минут. Мехактивированную смесь прессуют в таблетку диаметром 30 мм. Вес таблетки - 15 г. Таблетку [(2,4 г УНТ-0,6 г Ag)-12 г Ag] помещают между пенокерамическими фильтрами, через которые проливают 4,8 кг жидкого алюминия. Полученная лигатура содержит 0,05 мас. % УНТ-0,26 мас. % Ag.

Пример 2

Аналогичен примеру 1, отличается количеством введенных в лигатуру одностенных углеродных нанотрубок, модифицированных металлическим серебром. Количество таблеток - 4, их состав (0,05 мас. % УНТ-0,26 мас. % Ag).

Пример 3

Аналогичен примеру 1, отличается количеством введенных в лигатуру одностенных углеродных нанотрубок, модифицированных металлическим серебром.

Количество таблеток - 10, их состав (0,05 мас. % УНТ-0,26 мас. % Ag).

Пример 4

Аналогичен примеру 1, отличается только тем, что вместо одностенных углеродных нанотрубок в лигатуру вводят многостенные углеродные нанотрубки, модифицированные металлическим серебром.

Количество многостенных углеродных нанотрубок, модифицированных металлическим серебром, - (0,05 мас. % УНТ-0,26 мас. % Cu).

Пример 5

Аналогичен примеру 4, отличается количеством введенных в лигатуру многостенных углеродных нанотрубок, модифицированных металлическим серебром.

Количество таблеток - 4, их состав (0,05 мас. % УНТ-0,26 мас. % Ag).

Пример 6

Аналогичен примеру 4, отличается количеством введенных в лигатуру многостенных углеродных нанотрубок, модифицированных металлическим серебром. Количество таблеток - 10, их состав (0,05 мас. % УНТ-0,26 мас. % Ag).

Пример 7

Аналогичен примеру 1, отличается только тем, что не содержит углеродных нанотрубок, модифицированных металлическим серебром.

Похожие патенты RU2593875C2

название год авторы номер документа
ЛИГАТУРА ДЛЯ ПРИГОТОВЛЕНИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ АЛЮМИНИЯ ИЛИ АЛЮМИНИЕВЫХ СПЛАВОВ И СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРЫ (ВАРИАНТЫ) 2019
  • Предтеченский Михаил Рудольфович
  • Хасин Александр Александрович
  • Алексеев Артем Владимирович
RU2734316C1
СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРЫ ДЛЯ ПРИГОТОВЛЕНИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ АЛЮМИНИЯ ИЛИ АЛЮМИНИЕВЫХ СПЛАВОВ (ВАРИАНТЫ) 2020
  • Предтеченский Михаил Рудольфович
  • Хасин Александр Александрович
  • Алексеев Артем Владимирович
RU2746701C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТНЫХ МАТЕРИАЛОВ НА ОСНОВЕ МЕДНОЙ МАТРИЦЫ 2015
  • Рябых Виктор Владимирович
RU2625692C2
Способ получения нанокомпозиционного материала на основе меди, упрочненного углеродными нановолокнами 2018
  • Толочко Олег Викторович
  • Кольцова Татьяна Сергеевна
  • Ларионова Татьяна Васильевна
  • Бобрынина Елизавета Викторовна
RU2696113C1
Композитный катодный материал и способ его получения 2020
  • Володин Алексей Александрович
  • Слепцов Артем Владимирович
  • Арбузов Артем Андреевич
  • Фурсиков Павел Владимирович
  • Тарасов Борис Петрович
RU2758442C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТНОГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМИНИЯ 2017
  • Кидалов Сергей Викторович
  • Кольцова Татьяна Сергеевна
  • Толочко Олег Викторович
  • Возняковский Алексей Александрович
RU2676117C2
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДСОДЕРЖАЩЕГО КЕРАМИЧЕСКОГО МАТЕРИАЛА 2021
  • Порозова Светлана Евгеньевна
  • Поздеева Татьяна Юрьевна
  • Каченюк Максим Николаевич
RU2805705C2
Способ упрочнения композиционных материалов на основе углеродного волокна 2019
  • Урванов Сергей Алексеевич
  • Караева Аида Разимовна
  • Мордкович Владимир Зальманович
RU2714650C1
СПОСОБ МОДИФИЦИРОВАНИЯ ПОВЕРХНОСТИ НЕОРГАНИЧЕСКОГО ВОЛОКНА, МОДИФИЦИРОВАННОЕ ВОЛОКНО И КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2011
  • Толбин Алексей Юрьевич
  • Кепман Алексей Валерьевич
  • Малахо Артем Петрович
  • Крамаренко Евгений Иванович
  • Кулаков Валерий Васильевич
  • Авдеев Виктор Васильевич
RU2475463C1
СПОСОБ ИЗГОТОВЛЕНИЯ МЕЖСОЕДИНЕНИЙ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ 2015
  • Громов Дмитрий Геннадьевич
  • Дубков Сергей Владимирович
  • Лебедев Евгений Александрович
  • Шулятьев Алексей Сергеевич
  • Рыгалин Борис Николаевич
RU2593416C1

Иллюстрации к изобретению RU 2 593 875 C2

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОСТРУКТУР, МОДИФИЦИРОВАННЫХ МЕТАЛЛОМ, ЛИГАТУРА ДЛЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ АЛЮМИНИЯ ИЛИ АЛЮМИНИЕВОГО СПЛАВА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ

Изобретения могут быть использованы в химической и металлургической промышленности. Сначала исходные нанотрубки или нановолокна обрабатывают кислотой при 20-100°C, промывают и сушат. Высушенные нанотрубки или нановолокна пропитывают водным раствором соли соответствующего металла и выпаривают его при 90-100°C с получением композита «углеродная нанотрубка или нановолокно - соль соответствующего металла». Полученный композит нагревают в инертной среде до 550-650°C и восстанавливают при этой температуре в токе метана или метано-водородной смеси. Полученные углеродные наноструктуры, модифицированные присоединенными к их поверхности наночастицами металла размером не более 100 нм, используют в лигатуре для композиционных материалов на основе алюминия или его сплава. Указанная лигатура содержит, масс. %: алюминий или алюминиевый сплав - 80-99,85; модифицированные углеродные нанотрубки или нановолокна - 0,1-10; металл из ряда: серебро, или железо, или медь, или никель, или кобальт, или цинк, или рутений, или родий, или палладий, или золото, или платина, или магний, или олово, - 0,05-10. Для получения лигатуры модифицированные нановолокна или нанотрубки смешивают с порошком одного или нескольких указанных металлов, мехактивируют полученную смесь и смешивают с расплавленным алюминием или его сплавом, размещая ее между двумя пенокерамическими фильтрами и пропуская расплавленный алюминий последовательно через первый фильтр, мехактивированную смесь и второй фильтр. Способ прост и не требует использования особых условий и устройств. 3 н. и 10 з.п. ф-лы, 2 ил., 1 табл., 7 пр.

Формула изобретения RU 2 593 875 C2

1. Способ получения углеродных наноструктур, модифицированных наночастицами металла, отличающийся тем, что он включает следующие последовательно выполняемые стадии:
- исходные углеродные наноструктуры: нановолокна или нанотрубки, обрабатывают кислотой при температуре 20-100°С;
- обработанные кислотой углеродные наноструктуры промывают и сушат;
- высушенные углеродные наноструктуры пропитывают водным раствором соли соответствующего металла;
- водный раствор соли соответствующего металла выпаривают из пропитанных им углеродных наноструктур при 90-100°C с получением композита «углеродная наноструктура - соль соответствующего металла»;
- названный композит «углеродная наноструктура - соль соответствующего металла» нагревают в инертной среде до температуры 550-650°С и восстанавливают при этой температуре в потоке метана или метано-водородной смеси.

2. Способ по п. 1, отличающийся тем, что металл выбирают из ряда: серебро, или железо, или медь, или никель, или кобальт, или цинк, или рутений, или родий, или палладий, или золото, или платина, или магний, или олово.

3. Способ по п. 1, отличающийся тем, что кислоту выбирают преимущественно из ряда: азотная, и/или соляная, и/или серная.

4. Способ по п. 1, отличающийся тем, что обработку исходных углеродных наноструктур кислотой осуществляют не менее 20 мин.

5. Способ по п. 1, отличающийся тем, что солью металла является нитрат или карбонат.

6. Способ по п. 1, отличающийся тем, что сушку осуществляют при температуре 100-120°С.

7. Способ по п. 1, отличающийся тем, что обработанные кислотой углеродные наноструктуры промывают дистиллированной водой.

8. Способ по п. 1, отличающийся тем, что инертная среда включает азот, и/или аргон, и/или другие инертные газы.

9. Лигатура для приготовления композиционных материалов на основе алюминия или алюминиевого сплава, содержащая алюминий или его сплав и углеродные наноструктуры: нанотрубки или нановолокна, отличающаяся тем, что их содержание, масс. %:
алюминий или алюминиевый сплав 80-99,85 углеродные наноструктуры 0,1-10 металл из ряда: серебро, или железо, или медь, или никель, или кобальт, или цинк, или рутений, или родий, или палладий, или золото, или платина, или магний, или олово 0,05-10


причем углеродные наноструктуры модифицированы наночастицами по меньшей мере одного из названных металлов.

10. Способ получения лигатуры для приготовления композиционных материалов на основе алюминия или алюминиевого сплава, включающий смешивание углеродных наноструктур: нанотрубок или нановолокон, с расплавленным алюминием или его сплавом, отличающийся тем, что названные углеродные наноструктуры модифицированы наночастицами металла, при этом их предварительно смешивают с металлическим порошком и полученную смесь мехактивируют, затем полученную мехактивированную смесь смешивают с расплавленным алюминием или его сплавом путем размещения названной мехактивированной смеси между двумя пенокерамическими фильтрами и пропускания расплавленного алюминия или его сплава последовательно через первый фильтр, мехактивированную смесь и второй фильтр.

11. Способ по п. 10, отличающийся тем, что углеродные наноструктуры модифицированы наночастицами металла из ряда: серебро, железо, медь, никель, кобальт, цинк, рутений, родий, палладий, золото, платина, магний, олово.

12. Способ по п. 10, отличающийся тем, что наноструктуры смешивают с порошком металла из ряда: серебро, железо, медь, никель, кобальт, цинк, рутений, родий, палладий, золото, платина, магний, олово.

13. Способ по п. 10, отличающийся тем, что мехактивированную смесь предварительно прессуют в таблетки.

Документы, цитированные в отчете о поиске Патент 2016 года RU2593875C2

CN 101683978 A, 31.03.2010
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
МОДИФИЦИРОВАННЫЕ УГЛЕРОДНЫЕ ПРОДУКТЫ И ИХ ПРИМЕНЕНИЕ 2005
  • Хэмпден-Смит Марк Дж.
  • Карусо Джеймс
  • Атанассова Паолина
  • Кирлидис Агатагелос
RU2402584C2
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1
CN 101818280 A, 01.09.2010
US 4663230 A, 05.05.1987
US 5424054 A, 13.06.1995
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1

RU 2 593 875 C2

Даты

2016-08-10Публикация

2014-07-03Подача