Изобретение относится к импульсной технике и может быть использовано в силовых преобразователях электромагнитных подшипников.
Наиболее близким по технической сущности является цифровой широтно-импульсный модулятор (см. патент России №2172062, опубл. 10.08.2001, Бюл. №22), содержащий генератор прямоугольных импульсов, два счетчика, счетный триггер, триггер знака, три элемента ИЛИ, два триггера, инвертор, четыре элемента И, два мультиплексора, формирователь импульсов, элемент И-НЕ, схему ограничения и схему сброса.
Недостатком наиболее близкого цифрового широтно-импульсного модулятора является сложность его технической реализации.
Технический результат достигается тем, что в цифровом широтно-импульсном модуляторе, содержащем генератор прямоугольных импульсов, первый и второй счетчики, счетный триггер, триггер знака, первый и второй элементы ИЛИ, триггер, инвертор, элемент И, первый и второй мультиплексоры, схему ограничения и схему сброса, выход генератора прямоугольных импульсов соединен с первыми входами первого и второго элементов ИЛИ и входом счетного триггера, выход которого соединен с первым входом первого счетчика, вторые входы первого и второго элементов ИЛИ соединены соответственно с прямым и инверсным входами триггера знака, первый вход которого соединен с шиной знака, а второй вход - с выходом инвертора, выходы первого и второго элементов ИЛИ соединены соответственно с первым и вторым входами второго счетчика, третий вход которого соединен с выходом схемы ограничения, первый и второй входы схемы ограничения соединены соответственно с шиной входного сигнала и шиной знака, второй вход первого счетчика соединен с общей шиной, а выход - с первым входом элемента И, выход которого соединен с третьим входом первого счетчика, четвертым входом второго счетчика, входом инвертора и первым входом триггера, прямой выход триггера соединен с первым входом первого и вторым входом второго мультиплексоров, инверсный выход триггера соединен со вторым входом первого и первым входом второго мультиплексоров, прямой выход триггера знака соединен с третьими входами первого и второго мультиплексоров, выход схемы сброса соединен с вторым входом элемента И, выход второго счетчика соединен с вторым входом триггера, четвертые входы первого и второго мультиплексоров соединены с шиной блокировки, выходы первого и второго мультиплексоров соединены соответственно с первой и второй выходными шинами.
Существенные отличия находят свое выражение в новой совокупности связей между элементами устройства. Указанная совокупность связей позволяет упростить конструкцию цифрового модулятора для силового преобразователя электромагнитного подшипника.
На фиг. 1 представлена функциональная схема цифрового модулятора, на фиг. 2 - функциональная схема схемы ограничения, на фиг. 3 - временные диаграммы работы устройства.
Цифровой модулятор для силового преобразователя электромагнитного подшипника (фиг. 1) содержит генератор 1 прямоугольных импульсов, счетчики 2 и 3, счетный триггер 4, триггер 5 знака, элементы 6 и 7 ИЛИ, триггер 8, инвертор 9, элемент 10 И, мультиплексоры 11 и 12, схему 13 ограничения и схему 14 сброса, выходные шины 15 и 16, шину 17 входного сигнала, шину 18 знака и шину 19 блокировки. Выход генератора 1 прямоугольных импульсов соединен с первыми входами элементов 6 и 7 ИЛИ и входом счетного триггера 4, выход которого соединен с первым входом (входом прямого счета) счетчика 2. Вторые входы элементов 6 и 7 ИЛИ соединены соответственно с прямым и инверсным входами триггера 5 знака, первый вход которого соединен с шиной 18 знака, а второй вход - с выходом инвертора 9. Выходы элементов 6 и 7 ИЛИ соединены соответственно с первым (прямого счета) и вторым (обратного счета) входами счетчика 3, третий вход (вход предварительной установки) которого соединен с выходом схемы 13 ограничения. Первый и второй входы схемы 13 ограничения соединены соответственно с шиной 17 входного сигнала и шиной 18 знака. Второй вход (вход предварительной установки) счетчика 2 соединен с общей шиной, а выход (выход переноса) - с первым входом элемента 10 И, выход которого соединен с третьим входом (входом стробирования) счетчика 2, четвертым входом (входом стробирования) счетчика 3, входом инвертора 9 и первым входом (входом сброса) триггера 8. Прямой выход триггера 8 соединен с первым входом (информационным входом) мультиплексора 11 и вторым входом (информационным входом) мультиплексора 12. Инверсный выход триггера 8 соединен с вторым входом (информационным входом) мультиплексора 11 и первым входом (информационным входом) мультиплексора 12. Прямой выход триггера 5 знака соединен с третьими входами (входами выбора) мультиплексоров 11 и 12. Выход схемы 14 сброса соединен с вторым входом элемента 10 И. Выход счетчика 3 соединен с вторым входом (входом установки) триггера 8. Четвертые входы (входы разрешения) мультиплексоров 11 и 12 соединены с шиной 19 блокировки. Выходы мультиплексоров 11 и 12 соединены соответственно с выходными шинами 15 и 16.
Генератор 1 прямоугольных импульсов может быть выполнен, например, на микросхеме 155ЛА3 с кварцевой стабилизацией или с времязадающим конденсатором. Счетчики 2 и 3 могут быть реализованы, например, на микросхемах К555ИЕ7. Счетный триггер 4, триггер 5 знака и триггер 8 могут быть выполнены на микросхемах К555ТМ2. Элементы 6 и 7 ИЛИ могут быть реализованы микросхеме К555ЛЛ1, инвертор 9 - на микросхеме К555ЛН1, а элемент 10 И - на микросхеме К555ЛИ1. Мультиплексоры 11 и 12 могут быть выполнены на микросхеме К531КП2.
Схема 13 ограничения (фиг. 2) содержит, например, группу 20 элементов ИЛИ, группу 21 элементов И, элемент 22 И-НЕ, элементы 23 и 24 ИЛИ, элемент 25 ИЛИ-НЕ и инвертор 26.
В зависимости от величины, на которой должен быть ограничен входной сигнал, n-разрядные входы шины 17 разбиваются на две группы: с 1 до (n-m) и с (n-m+1) до n, причем m<n. Первая группа разрядов - с 1 до (n-m), соединена с первыми входами группы 20 элементов ИЛИ, выходы которых соединены с первыми входами группы 21 элементов И, выходы которых являются (n-m) младшими разрядами выхода схемы 13 ограничения. Вторая группа разрядных входов шины 17 - с (n-m+1) по n - являются соответствующими разрядами выхода схемы 13 ограничения. Они соединены с m входами элемента 22 И-НЕ и элемента 23 ИЛИ. Выход элемента 22 И-НЕ соединен с первым входом элемента 24 ИЛИ, выход которого соединен со вторыми входами группы 21 элементов И. Выход элемента 23 ИЛИ соединен с первым входом элемента 25 ИЛИ-НЕ, второй вход которого соединен с выходом инвертора 26, а выход - со вторыми входами группы 20 элементов ИЛИ. Второй вход элемента 24 ИЛИ и вход инвертора 26 соединены с шиной 18 знака.
Схема 14 сброса, например, может быть выполнена в виде последовательно соединенных резистора и конденсатора, причем второй вывод резистора присоединяется к шине питания, а второй вывод конденсатора - к общей шине. Вывод сопротивления, соединенный с конденсатором, является выходом схемы 14 сброса.
Цифровой модулятор для силового преобразователя электромагнитного подшипника работает следующим образом.
После включения напряжения питания схема 14 сброса формирует сигнал, который устанавливает в исходное состояние триггер 8, стробирует через элемент 10 И счетчики 2 и 3, а также через инвертор 9 - триггер 5 знака. При этом входной сигнал, пройдя через схему 13 ограничения, записывается в прямом (при положительном знаке сигнала) или дополнительном (при отрицательном знаке сигнала) коде в счетчик 3, а код знака этого сигнала записывается в триггер 5 знака.
В зависимости от знака входного сигнала импульсы генератора 1 с частотой f0 (фиг. 3а) проходят либо через элемент 6 ИЛИ (знак положительный), либо элемент 7 ИЛИ (знак отрицательный) и поступают соответственно либо на вход прямого счета, либо на вход обратного счета счетчика 3. В зависимости от величины N входного сигнала на выходе переноса счетчика 3 через промежуток времени
,
где n - количество разрядов двоичного счетчика,
после начальной установки (стробирования) появится отрицательный импульс (фиг. 3б). Этот импульс поступает на вход установки триггера 8. При этом на инверсном выходе триггера 8 появляется сигнал низкого уровня, который поступает на первый вход мультиплексора 12 и второй вход мультиплексора 11, а на прямом выходе триггера 8 появляется сигнал высокого уровня, который поступает на первый вход мультиплексора 11 и второй вход мультиплексора 12. Прямоугольные импульсы с генератора 1 поступают также на вход счетного триггера 4, который производит деление частоты f0 на 2. Прямоугольные импульсы с частотой (фиг. 3в) со счетного триггера 4 поступают на счетный вход счетчика 2. На выходе переноса счетчика 2 через промежуток времени
после начальной установки появляется отрицательный импульс (фиг. 3г), который, пройдя через элемент 10 И, поступает на вход сброса триггера 8 и возвращает его в исходное состояние. Этот же импульс через элемент 10 И стробирует счетчики 2 и 3 и через инвертор 9 - триггер 5 знака, после чего процесс формирования выходных сигналов счетчиков 2 и 3, триггера 8 и мультиплексоров 11 и 12 повторяется. Если на шине 19 блокировки присутствует разрешительный сигнал, то при положительном знаке входного сигнала на выход мультиплексора 11 проходит сигнал с прямого выхода триггера 8, а на выход мультиплексора 12 - с инверсного выхода триггера 8. При отрицательном знаке входного сигнала на выход мультиплексора 11 проходит сигнал с инверсного выхода триггера 8, а на выход мультиплексора 12 - с прямого выхода триггера 8. В результате на выходных шинах 15 и 16 (фиг. 3д, е) цифрового модулятора при любом знаке входного сигнала получается прямая и инверсная широтно-модулированные последовательности импульсов скважностью
.
Эти последовательности импульсов могут управлять силовыми транзисторами, регулирующими напряжения (токи) на обмотках противоположных магнитов электромагнитного подшипника. При запретительном уровне сигнала на шине 19 блокировки на выходных шинах 15 и 16 цифрового модулятора будут присутствовать сигналы низкого уровня. Это позволяет при необходимости блокировать работу силовых транзисторов и осуществлять требуемую логику запуска системы управления электромагнитным подшипником.
Схема 20 ограничения предназначена для ограничения на определенном уровне входного сигнала с целью исключения возможности опрокидывания широтно-импульсной модуляции.
Предложенный цифровой модулятор, так же как и прототип, позволяет управлять силовым преобразователем электромагнитного подшипника при значительном упрощении устройства.
название | год | авторы | номер документа |
---|---|---|---|
ЦИФРОВОЙ ШИРОТНО-ИМПУЛЬСНЫЙ МОДУЛЯТОР | 2015 |
|
RU2603546C2 |
ЦИФРОВОЙ ШИРОТНО-ИМПУЛЬСНЫЙ МОДУЛЯТОР | 1999 |
|
RU2172062C2 |
Цифровой широтно-импульсный модулятор | 1987 |
|
SU1478316A1 |
ЦИФРОВОЙ МОДУЛЯТОР ДЛЯ ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТЫ АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ | 2002 |
|
RU2216850C1 |
ЦИФРОВОЙ МОДУЛЯТОР ДЛЯ ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТЫ АСИНХРОННОГО ДВИГАТЕЛЯ | 1995 |
|
RU2111608C1 |
ЦИФРОВОЙ МОДУЛЯТОР ДЛЯ ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТЫ ДВУХФАЗНОГО АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ | 1997 |
|
RU2126198C1 |
Цифровой модулятор | 1991 |
|
SU1798907A1 |
Цифровой модулятор | 1991 |
|
SU1800604A1 |
Цифровой широтно-импульсный модулятор | 1989 |
|
SU1644371A2 |
ЦИФРОВОЙ РЕГУЛЯТОР ДЛЯ СИСТЕМЫ УПРАВЛЕНИЯ ЭЛЕКТРОМАГНИТНЫМ ПОДШИПНИКОМ | 2014 |
|
RU2572386C1 |
Изобретение относится к импульсной технике и может быть использовано в силовых преобразователях электромагнитных подшипников. Техническим результатом является упрощение конструкции цифрового модулятора для силового преобразователя электромагнитного подшипника. Цифровой модулятор для силового преобразователя электромагнитного подшипника (фиг. 1) содержит генератор 1 прямоугольных импульсов, счетчики 2 и 3, счетный триггер 4, триггер 5 знака, элементы 6 и 7 ИЛИ, триггер 8, инвертор 9, элемент 10 И, мультиплексоры 11 и 12, схему 13 ограничения и схему 14 сброса, выходные шины 15 и 16, шину 17 входного сигнала, шину 18 знака и шину 19 блокировки. Предложенный цифровой модулятор позволяет управлять силовым преобразователем электромагнитного подшипника при значительном упрощении устройства. 3 ил.
Цифровой модулятор для силового преобразователя электромагнитного подшипника, содержащий генератор прямоугольных импульсов, первый и второй счетчики, счетный триггер, триггер знака, первый и второй элементы ИЛИ, триггер, инвертор, элемент И, первый и второй мультиплексоры, схему ограничения и схему сброса, причем выход генератора прямоугольных импульсов соединен с первыми входами первого и второго элементов ИЛИ и входом счетного триггера, выход которого соединен с первым входом первого счетчика, вторые входы первого и второго элементов ИЛИ соединены соответственно с прямым и инверсным входами триггера знака, первый вход которого соединен с шиной знака, а второй вход - с выходом инвертора, выходы первого и второго элементов ИЛИ соединены соответственно с первым и вторым входами второго счетчика, третий вход которого соединен с выходом схемы ограничения, первый и второй входы схемы ограничения соединены соответственно с шиной входного сигнала и шиной знака, второй вход первого счетчика соединен с общей шиной, а выход - с первым входом элемента И, выход которого соединен с третьим входом первого счетчика, четвертым входом второго счетчика, входом инвертора и первым входом триггера, прямой выход триггера соединен с первым входом первого и вторым входом второго мультиплексоров, инверсный выход триггера соединен с вторым входом первого и первым входом второго мультиплексоров, прямой выход триггера знака соединен с третьими входами первого и второго мультиплексоров, выход схемы сброса соединен с вторым входом элемента И, отличающийся тем, что выход второго счетчика соединен с вторым входом триггера, четвертые входы первого и второго мультиплексоров соединены с шиной блокировки, выходы первого и второго мультиплексоров соединены соответственно с первой и второй выходными шинами.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Аппарат, предназначенный для летания | 0 |
|
SU76A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Приспособление для точного наложения листов бумаги при снятии оттисков | 1922 |
|
SU6A1 |
Колосоуборка | 1923 |
|
SU2009A1 |
Авторы
Даты
2016-09-10—Публикация
2014-07-10—Подача