МНОГОПОТОЧНОЕ ПРОИЗВОДСТВО ПО ПЕРЕРАБОТКЕ ПРИРОДНЫХ ГАЗОВ Российский патент 2016 года по МПК F25J3/00 

Описание патента на изобретение RU2603874C2

Многопоточное производство по переработке природных газов, обеспечивающее переработку газа газодобывающего региона, которое может быть использовано в газовой промышленности в условиях ее интенсивного развития.

Природный газ, состоящий, в основном, из метана, содержит в себе ряд примесей, в частности воду, азот, сероводород, диоксид углерода, гелий, меркаптаны, такие легкие углеводороды, как этан, пропан, бутан, которые являются, с одной стороны, вредными примесями, ухудшающими в той или иной мере качество топливного газа, например его теплоту сгорания, а с другой - ценными компонентами, являющимися сырьем газохимической промышленности в производстве метанола, элементарной серы, сульфидов, непредельных углеводородов и опосредованно - полимеров, спиртов, гликолей и т.д.

Производства по переработке природного газа относятся к крупнотоннажным промышленным производствам, перерабатывающим до нескольких миллиардов нм3 в год или нескольких миллионов т/год сырого газа. Однако в условиях интенсивного развития газовой промышленности объемы добычи природного газа резко возрастают именно в тех регионах, где отсутствуют дополнительные технические и кадровые ресурсы. Так, например, в Восточной Сибири и на Дальнем Востоке еще в 2010 году добывалось всего 33 млрд. нм3 в год природного газа, из которых только 65% подвергалось переработке, а остальные 35% закачивались обратно в пласт или сжигались на факелах, однако по перспективным планам развития этих регионов добыча в них природного газа к 2030 году должна быть доведена до 200 млрд. нм3 в год. Для решения этой задачи нерационально строительство десятков крупнотоннажных газоперерабатывающих заводов, что неизбежно должно привести к раздроблению экономического потенциала региона, удорожанию строительства газоперерабатывающих заводов и увеличению себестоимости переработки газа. С целью концентрации экономического потенциала при переработке 200 млрд. нм3 в год природного газа предполагается в этом регионе построить 3 крупнейших газоперерабатывающих завода и газохимического комбината с инвестициями до 2030 г. до 160 млрд. рублей (Коржубаев А.Г., Филимонова И.В. Перспективы комплексного развития нефтяной и газовой промышленности Восточной Сибири и Дальнего Востока. Газовая промышленность, 2011, №6, с. 10-16).

Спецификой крупных производств по переработке десятков млрд. нм3 в год природного газа является наличие в их технологической схеме нескольких идентичных по аппаратурному оформлению, производственной мощности и ассортименту выпускаемой продукции технологических потоков. Подобная структура многопоточного производства обусловлена двумя факторами. Во-первых, практически нереально изготовить единичные технологические аппараты: ректификационные колонны, компрессоры, теплообменники и т.д., способные переработать 50-70 млрд. нм3 в год природного газа в одном технологическом потоке, из-за гигантских габаритов аппаратов. Во-вторых, единственный технологический поток, требующий остановки производства на текущий и капитальный ремонт, а также в случаях аварийных остановок, может в эти периоды привести к критической ситуации экономику целого региона, поскольку при этом также нарушится подача топлива промышленным предприятиям и населению, а также сырья газохимическим предприятиям. В связи с этим, например, на производстве по переработке 70 млрд. нм3 в год природного газа имеется не менее семи-восьми параллельных и идентичных технологических потоков, один из которых является резервным, не перерабатывающим исходное сырье и запускаемым в эксплуатацию только во время плановых остановок по ремонту и/или реконструкции или аварий на одном из технологических потоков. Типовой технологический поток многопоточного производства включает блок подготовки газа к извлечению товарных продуктов и полупродуктов, блок криогенного извлечения тяжелой углеводородной части природного газа, начиная от этана, блок криогенного разделения легкой углеводородной части, в котором в качестве хладагента используют метан с примесями азота, что обеспечивает выработку ассортимента выпускаемой продукции, состоящего из топливного газа, этана, широкой фракции легких углеводородов или пропана, бутанов, пентан-гексановой фракции и гелиевого концентрата. Однако структура производства с наличием резервного потока, работающего периодически, имеет и существенный недостаток. Простой в течение длительного времени резервного технологического потока приводит к снижению фондоотдачи, поскольку амортизационные отчисления от капитальных затрат на создание простаивающего технологического потока включаются в себестоимость конечной продукции предприятия, а повышение себестоимости продукции ухудшает экономические показатели и конъюнктурные позиции предприятия.

Задача, на решение которой направлено заявленное техническое решение, заключается в разработке ряда вариантов повышения эффективности многопоточной переработки природных газов за счет использования внутренних резервов производства и расширения ассортимента выпускаемой товарной продукции.

Данная задача достигается за счет того, что многопоточное производство по переработке природных газов включает ряд идентичных эксплуатируемых технологических потоков и один резервный технологический поток, каждый из которых состоит из блока подготовки газа к извлечению товарных продуктов и полупродуктов, блока криогенного извлечения тяжелой углеводородной части природного газа, начиная от этана, блока криогенного разделения легкой углеводородной части, в котором в качестве хладагента используют метан, что обеспечивает выработку ассортимента выпускаемой продукции, состоящего из метанового топливного газа, этана, широкой фракции легких углеводородов, пропана, бутанов, пентан-гексановой фракции и гелиевого концентрата, позволяет дополнительно получать сжиженный природный газ за счет того, что резервный технологический поток объединяется системой трубопроводов с эксплуатируемыми технологическими потоками.

В первом варианте решения поставленной задачи часть метанового топливного газа, вырабатываемого на эксплуатируемых технологических потоках, по системе трубопроводов направляют на резервный технологический поток в блок криогенного разделения газов с частичным сжижением метана, далее отгружаемого потребителям в качестве сжиженного природного газа.

Во втором варианте решения поставленной задачи перерабатываемый природный газ по системе трубопроводов равномерно распределяют по всем технологическим потокам, включая резервный, с получением в блоках криогенного разделения газов сжиженного метана и дальнейшей отгрузкой образующихся излишков сжиженного метана потребителям в качестве сжиженного природного газа. Снижение производительности технологической линии приводит к интенсификации работы технологической аппаратуры, а именно:

- повышению четкости разделения смеси компонентов в ректификационных колоннах, так как при снижении производительности аппарата при прочих равных условиях увеличиваются флегмовые и паровые числа в колонне;

- повышению энергосбережения, поскольку при сохранении четкости разделения смеси компонентов в ректификационных колоннах и снижении производительности аппарата при прочих равных условиях сохраняются флегмовые и паровые числа в колонне и уменьшается абсолютная величина теплоподвода и теплосъема;

- уменьшению расхода теплоносителей и хладагентов в теплообменных аппаратах, обеспечивающих работу ректификационных колонн, из-за снижения их тепловой нагрузки;

- эффективности использования дополнительного оборудования, такого как: фильтры - за счет снижения гидравлического сопротивления, адсорберы - за счет увеличения глубины очистки газовых потоков при уменьшении скорости очищаемых потоков;

- в блоках криогенного разделения легкой углеводородной части создается резерв холодильных мощностей, позволяющих производить излишек сжиженного метана, который далее используется в качестве дополнительной продукции предприятия - сжиженного природного газа.

Реализация многопоточного производства по переработке природных газов представлена на фигурах 1-3.

На фигуре 1 приведена традиционная схема многопоточного производства по переработке природных газов, на фигурах 2 и 3 приведены варианты совершенствования схем многопоточного производства по переработке природных газов в соответствии с заявляемым изобретением, в которых включены следующие блоки и трубопроводы:

1 - блок подготовки газа к извлечению товарных продуктов и полупродуктов;

2 - блок криогенного извлечения тяжелой углеводородной части природного газа, начиная от этана;

3 - блок криогенного разделения легкой углеводородной части;

10, 11, 20, 30, 40, 50-54 - трубопроводы.

На фигурах 1-3 пунктирными линиями обозначены нефункционирующие блоки и внешние и внутренние трубопроводы товарных продуктов и полупродуктов, не вовлеченные в технологический процесс, сплошными линиями обозначены функционирующие внешние и внутренние трубопроводы товарных продуктов и полупродуктов, вовлеченных в технологический процесс.

Блоки 1-3 связаны между собой трубопроводами в технологический поток. Многопоточное производство по переработке природных газов в рассматриваемых примерах включает семь идентичных по аппаратурному оформлению технологических потоков.

На фигуре 1 представлена традиционная схема, в которой исходный природный газ, поступающий по трубопроводу 10 и распределяемый на каждый технологический поток по трубопроводу 11, последовательно проходит блок подготовки газа к извлечению товарных продуктов и полупродуктов 1, блок криогенного извлечения тяжелой углеводородной части природного газа, начиная от этана, 2, блок криогенного разделения легкой углеводородной части 3, в котором в качестве хладагента используют метан с примесями азота, с получением следующих товарных продуктов: этан, широкая фракция легких углеводородов, гелиевый концентрат и метановый топливный газ, отводимых соответственно по трубопроводам 20, 30, 40 и 50.

В отличии от фигуры 1 на фигуре 2 представлен первый вариант совершенствования схемы заявляемого многопоточного производства по переработке природных газов, в котором топливный газ, выработанный на шести функционирующих технологических потоках, объединяется и по трубопроводу 53 отводится потребителям. Схемой предусмотрен отбор из трубопровода 53 части топливного газа по трубопроводу 51 в блок криогенного разделения легкой углеводородной части 3 резервного технологического потока. В блоке криогенного разделения легкой углеводородной части 3 резервного технологического потока топливный газ сжижается с использованием криогенного оборудования блока, что позволяет расширить ассортимент вырабатываемой продукции, получая отводимый по трубопроводу 54 сжиженный метан, который далее можно транспортировать на экспорт морскими судами. Неконденсированная на резервном технологическом потоке часть метана по трубопроводу 52 подается в трубопровод 53 в качестве топливного газа.

В отличии от фигур 1 и 2 на фигуре 3, согласно второму варианту, весь исходный природный газ, поступающий на производство по трубопроводу 10, по трубопроводам 11 равномерно распределяется на все семь технологических потоков, уменьшая производительность каждого из них на 14%. Это позволяет за счет образующихся резервных мощностей криогенного оборудования вырабатывать на каждом технологическом потоке сжиженный метан, который далее можно транспортировать на экспорт морскими судами, расширяя ассортимент вырабатываемой продукции. Кроме того, снижение производительности фракционирующего оборудования в блоке криогенного извлечения тяжелой углеводородной части природного газа, начиная от этана, 2 на 14% позволяет при сохранении качества вырабатываемых товарных углеводородов, а именно этана и широкой фракции легких углеводородов или пропана, бутана, пентан-гексановой фракции, снизить на 14% энергозатраты на подвод и съем тепла в теплообменной системе обеспечения работы ректификационных колонн или при сохранении энергозатрат улучшить четкость разделения углеводородов в ректификационных колоннах и, как следствие, возможен и промежуточный вариант решения задачи, когда совмещаются экономия энергозатрат и повышение сортности вырабатываемых товарных углеводородов.

Кроме того, вовлечение в технологический процесс части оборудования резервного технологического потока, представленное на фигуре 2, или всего оборудования резервного технологического потока, представленное на фигуре 3, снизит фондоотдачу многопоточного производства и в целом повысит его экономические показатели за счет расширения ассортимента, выработки более качественной продукции и снижения энергозатрат.

По предлагаемым решениям проведено математическое моделирование процесса. В таблице 1 приведен материальный баланс многопоточного производства по переработке природных газов, работающего по первому варианту согласно фигуре 2. В таблице 2 приведен материальный баланс многопоточного производства по переработке природных газов, работающего по второму варианту согласно фигуре 3. Из приведенных материальных балансов видно, что использование резервной технологической линии для выработки нового товарного продукта позволяет получить до 36 т/ч по первому варианту и до 14 т/ч по второму варианту сжиженного природного газа.

Таким образом, предложенное изобретение многопоточного производства по переработке природных газов решает задачу повышения эффективности многопоточного производства по переработке природных газов за счет использования внутренних резервов производства и расширения ассортимента выпускаемой товарной продукции.

Похожие патенты RU2603874C2

название год авторы номер документа
КЛАСТЕР ПО ПЕРЕРАБОТКЕ ПРИРОДНОГО ГАЗА С ИЗВЛЕЧЕНИЕМ ГЕЛИЯ 2014
  • Мнушкин Игорь Анатольевич
RU2574243C9
СПОСОБ ПЕРЕРАБОТКИ ПРИРОДНЫХ ГАЗОВ 2013
  • Мнушкин Игорь Анатольевич
RU2560406C2
СПОСОБ ПЕРЕРАБОТКИ ПРИРОДНОГО УГЛЕВОДОРОДНОГО ГАЗА С ВАРЬИРУЕМЫМ СОДЕРЖАНИЕМ АЗОТА 2015
  • Мнушкин Игорь Анатольевич
RU2597700C1
Газоперерабатывающий и газохимический комплекс 2019
  • Мнушкин Игорь Анатольевич
RU2710228C1
Комплекс переработки в газохимическую продукцию углеводородного сырья месторождений, расположенных в сложных климатических условиях 2021
  • Мнушкин Игорь Анатольевич
RU2771006C1
ГАЗОХИМИЧЕСКИЙ КОМПЛЕКС 2017
  • Мнушкин Игорь Анатольевич
RU2648077C9
Газохимический комплекс 2019
  • Мнушкин Игорь Анатольевич
RU2703135C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ПРИРОДНОГО УГЛЕВОДОРОДНОГО ГАЗА С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ АЗОТА 2015
  • Мнушкин Игорь Анатольевич
  • Ерохин Евгений Викторович
RU2576428C1
Производственный кластер 2018
  • Мнушкин Игорь Анатольевич
RU2685099C1
Комплекс по переработке магистрального природного газа в товарную продукцию 2020
  • Мнушкин Игорь Анатольевич
RU2744415C1

Иллюстрации к изобретению RU 2 603 874 C2

Реферат патента 2016 года МНОГОПОТОЧНОЕ ПРОИЗВОДСТВО ПО ПЕРЕРАБОТКЕ ПРИРОДНЫХ ГАЗОВ

Изобретение относится к переработке природных газов. Многопоточное производство по переработке природных газов включает ряд идентичных эксплуатируемых технологических потоков и один резервный технологический поток. Каждый из потоков состоит из блока подготовки газа к извлечению товарных продуктов и полупродуктов, блока криогенного извлечения тяжелой углеводородной части природного газа, начиная от этана, блока криогенного разделения легкой углеводородной части. В блоке криогенного разделения легкой углеводородной части в качестве хладагента используют метан. В результате обеспечивается выработка ассортимента выпускаемой продукции, состоящего из метанового топливного газа, этана, широкой фракции легких углеводородов, пропана, бутанов, пентан-гексановой фракции и гелиевого концентрата. Дополнительно обеспечивается получение сжиженного природного газа за счет того, что резервный технологический поток объединяется системой трубопроводов с эксплуатируемыми технологическими потоками. Техническим результатом является повышение эффективности производства и расширение ассортимента выпускаемой продукции. 2 з.п. ф-лы, 3 ил., 2 табл.

Формула изобретения RU 2 603 874 C2

1. Многопоточное производство по переработке природных газов, включающее ряд идентичных эксплуатируемых технологических потоков и один резервный технологический поток, каждый из которых состоит из блока подготовки газа к извлечению товарных продуктов и полупродуктов, блока криогенного извлечения тяжелой углеводородной части природного газа, начиная от этана, блока криогенного разделения легкой углеводородной части, в котором в качестве хладагента используют метан, что обеспечивает выработку ассортимента выпускаемой продукции, состоящего из метанового топливного газа, этана, широкой фракции легких углеводородов, пропана, бутанов, пентан-гексановой фракции и гелиевого концентрата, позволяет дополнительно получать сжиженный природный газ за счет того, что резервный технологический поток объединяется системой трубопроводов с эксплуатируемыми технологическими потоками.

2. Многопоточное производство по п. 1, отличающееся тем, что часть метанового топливного газа, вырабатываемого на эксплуатируемых технологических потоках, по системе трубопроводов направляют на резервный технологический поток в блок криогенного разделения газов с частичным сжижением метана, далее отгружаемого потребителям в качестве сжиженного природного газа.

3. Многопоточное производство по п. 1, отличающееся тем, что перерабатываемый природный газ по системе трубопроводов равномерно распределяют по всем технологическим потокам, включая резервный, с получением в блоках криогенного разделения газов сжиженного метана и дальнейшей отгрузкой образующихся излишков сжиженного метана потребителям в качестве сжиженного природного газа.

Документы, цитированные в отчете о поиске Патент 2016 года RU2603874C2

СПОСОБ ПЕРЕРАБОТКИ ПРИРОДНОГО И ПОПУТНОГО НЕФТЯНОГО ГАЗА 2012
  • Левин Евгений Владимирович
  • Окунев Александр Юрьевич
  • Борисюк Виктор Петрович
RU2486945C1
СПОСОБ ОХЛАЖДЕНИЯ УГЛЕВОДОРОДНОГО ГАЗА ПРИ ПОДГОТОВКЕ К ТРАНСПОРТУ 2001
  • Дудов А.Н.
  • Кульков А.Н.
  • Гузов В.Ф.
  • Салихов Ю.Б.
  • Воронин В.И.
  • Ставицкий В.А.
RU2199053C2
US 4512782 A, 23.04.1985.

RU 2 603 874 C2

Авторы

Мнушкин Игорь Анатольевич

Даты

2016-12-10Публикация

2015-03-25Подача