СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛИ ИЗ СПЛАВА НА ОСНОВЕ НИКЕЛЯ Российский патент 2016 года по МПК C23C8/02 C23C8/36 C23C14/48 

Описание патента на изобретение RU2605395C1

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе никеля, и может быть использовано для изготовления деталей и узлов горячего тракта газотурбинных авиационных двигателей, стационарных газотурбинных установок и других изделий, работающих при высоких температурах.

Широко известны процессы упрочнения поверхности деталей методами ХТО. Известен, например способ химико-термической обработки стальных изделий, включающий диффузионное насыщение элементами внедрения и замещения и последующий нагрев поверхности изделия (А.С. СССР №1515772, МПК С23С 8/00. СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ. Бюл. №36, 2013 г.).

Известен способ ХТО деталей, заключающий в высокотемпературном азотировании, закалке с последующим отпуском [Лахтин Ю.М., Коган Я.Д. Азотирование стали. М.: Машиностроение, 1976, с. 99-102]. В результате обработки получают высокоазотистый слой небольшой толщины. Такой слой хорошо противостоит коррозии в атмосфере, но плохо работает при высоких изгибных, контактных напряжениях и в условиях повышенного износа.

Известны также ионно-плазменные методы химико-термической обработки, например методы ионного азотирования в плазме тлеющего разряда постоянного или пульсирующего тока, которые включают в себя две стадии: очистку поверхности катодным распылением и собственно насыщение поверхности металла азотом [Теория и технология азотирования / Лохтин Ю.М, Коган Л.Д. и др. // М., Металлургия, 1990, С. 89].

Известен также способ химико-термической обработки металлов и сплавов, при котором на стадии очистки изделий тлеющий разряд периодически переводят в импульсную электрическую дугу. Это позволяет интенсифицировать процесс за счет быстрого разогрева обрабатываемой поверхности в первые минуты до более высоких температур, чем температура процесса азотирования (А.С. СССР 1534092, МПК С23С 8/36, опубл. 07.01.90; BG 43787. МПК С23С 8/36. METHOD FOR CHEMICO-THERMIC TREATMENT IN GLOWING DISCHARGE OF GEAR TRANSMISSIONS. 1988).

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ химико-термической обработки деталей из металлов или сплавов, включающий размещение детали в рабочей камере установки, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температур химико-термической обработки и выдержку при этих температурах до формирования необходимой толщины диффузионного слоя (А.С. СССР №1574679, МПК С23С 8/36, опубл. 30.06.90; патент РФ №2144095, МПК С23С 8/38, опубл. 10.01.2000).

Недостатками известных способов и прототипа являются невысокая износостойкость поверхности из-за неоднородности диффузионного слоя и образования в диффузионном слое хрупких фаз, а также низкая производительность насыщения поверхностного слоя материала детали в процессе ХТО. ХТО с использованием известных способов приводит к следующим негативным явлениям: существует высокая вероятность образования неравномерного слоя с уменьшенной концентрацией насыщаемого вещества, неоднородной и пониженной твердостью материала поверхностного слоя, возникновением дефектных участков. Для удаления дефектных участков поверхностного слоя после ХТО проводится шлифование, однако при удалении обедненного дефектного слоя часто образуются прижоги и ряд других характерных дефектов поверхностного слоя и в результате снижение износостойкости деталей.

Задачей предлагаемого изобретения является интенсификация процесса и повышение качества химико-термической обработки деталей за счет активации и обеспечения однородного состояния материала поверхностного слоя деталей в процессе ХТО и, как следствие, повышение износостойкости деталей.

Техническим результатом заявляемого изобретения является повышение производительности и качества процесса ХТО, а также повышение износостойкости деталей после ХТО.

Технический результат достигается тем, что способ химико-термической обработки деталей из сплава на основе никеля, включающий размещение детали в рабочей камере установки, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температур химико-термической обработки и выдержку при этих температурах до формирования необходимой толщины диффузионного слоя, в отличие от прототипа активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 35 до 50 кэВ, дозе облучения от 1,2·1017 см-2 до 1,6·1017 см-2, скорости набора дозы облучения от 0,6·1015 с-1 до 0,9·1015 с-1, и при использовании в качестве имплантируемых ионов следующих элементов: С, N, Cr, Y, Yb или их комбинации. Кроме того, возможно использование в способе следующих дополнительных приемов: химико-термическую обработку детали проводят ионно-плазменным методом; в качестве ионно-плазменного метода используют ионно-плазменное азотирование, или ионно-плазменную цементацию, или ионно-плазменную нитроцементацию.

Повышение требований к качеству обработки деталей машин послужили поводом для совершенствования методов насыщения поверхности легирующими элементами и привели к созданию ряда новых способов обработки, таких как ионное азотирование [Теория и технология азотирования / Лохтин Ю.М, Коган Л.Д. и др. // М., Металлургия, 1990, с. 89] и ионная имплантация [например, патент РФ №2496910. МПК С23С 14/02. СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ ЛОПАТОК КОМПРЕССОРА ИЗ ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ И СПЛАВОВ НА НИКЕЛЕВОЙ ОСНОВЕ. Бюл №30, 2013]. Ионная имплантация позволяет производить насыщение поверхностного слоя деталей практически любыми легирующими элементами, а детали, упрочненные методом ионной имплантации, имеют гораздо более высокие эксплуатационные свойства, чем детали, подвергнутые обычной или ионной химико-термической обработке [Модифицирование и легирование поверхности лазерными, ионными и электронными пучками. / Под ред. Д.М. Поута, Г. Фоти, Д.К. Джекобсона / М.: «Мир», 1987, 424 с.; Модифицирование и легирование поверхности лазерными, ионными и электронными пучками. / Под ред. Дж.М. Поута. М.: Машиностроение, 1987. - 424 с.]. При этом основными недостатками ионно-имплантационной обработки являются дороговизна метода и незначительная глубина проникновения легированных элементов в поверхностный слой материала.

Для оценки эксплуатационных свойств деталей, обработанных по предлагаемому способу, были проведены следующие испытания. Образцы из сплавов на основе никеля были подвергнуты обработке как по способам-прототипам ((А.С. СССР №1574679, патент РФ №2144095), согласно приведенных в способе-прототипе условий и режимов обработки, так и по вариантам предлагаемого способа.

Режимы обработки образцов по предлагаемому способу

Ионная имплантация при обработке деталей из никелевых сплавов перед ХТО проводилась по следующим режимам: имплантируемые ионы С, N, Cr, Y, Yb или их комбинация; доза 1,0·1017 см-2 (Н.Р. - неудовлетворительный результат); 1,2·1017 см-2 (У.Р. - удовлетворительный результат); 1,6·1017 см-2 (У.Р.); 1,9·1017 см-2 (Н.Р.); скорость набора дозы 0,4·1015 с-1 (Н.Р.); 0,6·1015 с-1 (У.Р.); 0,9·1015 с-1 (У.Р.); 1,2·1015 с-1 (Н.Р.); энергия 30 кэВ (Н.Р.); 40 кэВ (У.Р.); 50 кэВ (У.Р.); 55 кэВ (Н.Р.).

Химико-термическую обработку деталей проводили газовым и ионно-плазменным методами (отличие предлагаемого способа от существующих состояла в предварительной активации поверхности ионно-имплантационной обработкой). В качестве одного из методов ХТО применяли ионно-плазменное азотирование, ионно-плазменную цементацию и ионно-плазменную нитроцементацию.

Испытания показали на повышение износостойкости образцов по сравнению с прототипом в 1,3…1, 6 раза (т.е. в результате использования активирования поверхности перед ХТО). Скорость обработки, за счет увеличения скорости диффузии при ХТО возросла приблизительно в 1,2…1,7 раз. Исследование образцов показало на повышение однородности структуры диффузионной зоны материалов.

Таким образом, проведенные сравнительные испытания показали, что применение в способе химико-термической обработки детали из сплава на основе никеля существенных признаков: размещение детали в рабочей камере; активирование поверхности детали перед химико-термической обработкой; подачу в камеру рабочей насыщающей среды; нагрев детали до температуры химико-термической обработки и выдержку при этой температуре до формирования необходимой толщины диффузионного слоя; проведение активирования поверхности детали перед химико-термической обработкой с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 35 до 50 кэВ, дозе облучения от 1,2·1017 см-2 до 1,6·1017 см-2, скорости набора дозы облучения от 0,6·1015 с-1 до 0,9·1015 с-1 и при использовании в качестве имплантируемых ионов ионов следующих элементов: С, N, Cr, Y, Yb или их комбинации, а также при использовании дополнительных приемов: химико-термическую обработку детали проводят ионно-плазменным методом; в качестве ионно-плазменного метода используют ионно-плазменное азотирование, или ионно-плазменную цементацию, или ионно-плазменную нитроцементацию, позволяет обеспечить заявленный технический результат предлагаемого изобретения - повышение производительности и качества процесса ХТО, а также повышение износостойкости деталей после ХТО.

Похожие патенты RU2605395C1

название год авторы номер документа
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛИ ИЗ СПЛАВА НА ОСНОВЕ КОБАЛЬТА 2015
  • Криони Николай Константинович
  • Мингажев Аскар Джамилевич
  • Давлеткулов Раис Калимуллович
  • Мингажева Алиса Аскаровна
  • Измайлова Наиля Федоровна
  • Бахтиарова Евгения Вадимовна
RU2605394C1
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛИ ИЗ ЛЕГИРОВАННОЙ СТАЛИ 2014
  • Криони Николай Константинович
  • Мингажев Аскар Джамилевич
  • Давлеткулов Раис Калимуллович
  • Мингажева Алиса Аскаровна
  • Измайлова Наиля Федоровна
  • Бахтиарова Евгения Вадимовна
RU2559606C1
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛИ ИЗ СПЛАВА НА ОСНОВЕ ТИТАНА 2015
  • Криони Николай Константинович
  • Мингажев Аскар Джамилевич
  • Давлеткулов Раис Калимуллович
  • Мингажева Алиса Аскаровна
  • Измайлова Наиля Федоровна
  • Бахтиарова Евгения Вадимовна
RU2606352C1
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛИ ИЗ ТИТАНА 2015
  • Криони Николай Константинович
  • Мингажев Аскар Джамилевич
  • Давлеткулов Раис Калимуллович
  • Мингажева Алиса Аскаровна
  • Измайлова Наиля Федоровна
  • Бахтиарова Евгения Вадимовна
RU2605029C1
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛИ ИЗ ЛЕГИРОВАННОЙ СТАЛИ 2016
  • Криони Николай Константинович
  • Мингажев Аскар Джамилевич
  • Кононова Анастасия Юрьевна
  • Мингажева Алиса Аскаровна
RU2627551C1
СПОСОБ АЗОТИРОВАНИЯ ДЕТАЛИ ИЗ ЛЕГИРОВАННОЙ СТАЛИ 2022
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Мингажева Алиса Аскаровна
RU2777058C1
СПОСОБ ИОННОГО АЗОТИРОВАНИЯ РЕЖУЩЕГО ИНСТРУМЕНТА ИЗ ЛЕГИРОВАННОЙ СТАЛИ 2016
  • Насыров Вадим Файзерахманович
  • Мингажев Аскар Джамилевич
  • Хуснимарданов Рушан Наилевич
  • Галимова Ирина Рифхатовна
  • Измайлова Наиля Фёдоровна
  • Бабенко Наталья Сергеевна
RU2634400C1
СПОСОБ АЗОТИРОВАНИЯ ДЕТАЛИ ИЗ ЛЕГИРОВАННОЙ СТАЛИ 2023
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Мингажева Алиса Аскаровна
RU2795620C1
СПОСОБ АЗОТИРОВАНИЯ ДЕТАЛИ ИЗ ЛЕГИРОВАННОЙ СТАЛИ 2022
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Мингажева Алиса Аскаровна
RU2787278C1
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛИ ИЗ ЛЕГИРОВАННОЙ СТАЛИ 2018
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Яшина Анна Сергеевна
  • Поезжалова Светлана Николаевна
  • Измайлова Наиля Фёдоровна
  • Даутов Станислав Сагитович
RU2677908C1

Реферат патента 2016 года СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛИ ИЗ СПЛАВА НА ОСНОВЕ НИКЕЛЯ

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе никеля, и может быть использовано для изготовления деталей и узлов горячего тракта газотурбинных авиационных двигателей, стационарных газотурбинных установок и других изделий, работающих при высоких температурах. Способ химико-термической обработки детали из сплава на основе никеля включает размещение детали в рабочей камере установки, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температур химико-термической обработки и выдержку при этих температурах до формирования необходимой толщины диффузионного слоя. Активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 35 до 50 кэВ, дозе облучения от 1,2·1017 см-2 до 1,6·1017 см-2, скорости набора дозы облучения от 0,6·1015 с-1 до 0,9·1015 с-1, при этом в качестве имплантируемых ионов используют ионы С, N, Cr, Y, Yb или их комбинации. В частных случаях осуществления изобретения химико-термическую обработку детали проводят ионно-плазменным азотированием, или ионно-плазменной цементацией, или ионно-плазменной нитроцементацией. Обеспечивается повышение производительности и качества процесса химико-термической обработки, а также повышение износостойкости деталей после химико-термической обработки. 2 з.п. ф-лы, 1 пр.

.

Формула изобретения RU 2 605 395 C1

1. Способ химико-термической обработки детали из сплава на основе никеля, включающий размещение детали в рабочей камере установки, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температур химико-термической обработки и выдержку при этих температурах до формирования необходимой толщины диффузионного слоя, отличающийся тем, что активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 35 до 50 кэВ, дозе облучения от 1,2·1017 см-2 до 1,6·1017 см-2, скорости набора дозы облучения от 0,6·1015 с-1 до 0,9·1015 с-1, при этом в качестве имплантируемых ионов используют ионы С, N, Cr, Y, Yb или их комбинации.

2. Способ по п. 1, отличающийся тем, что химико-термическую обработку детали проводят ионно-плазменным методом.

3. Способ по п. 2, отличающийся тем, что в качестве ионно-плазменного метода используют ионно-плазменное азотирование, или ионно-плазменную цементацию, или ионно-плазменную нитроцементацию.

Документы, цитированные в отчете о поиске Патент 2016 года RU2605395C1

СПОСОБ НАНЕСЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ НА ДЕТАЛИ ИЗ ЖАРОПРОЧНЫХ СПЛАВОВ 2000
  • Падеров А.Н.
  • Векслер Ю.Г.
RU2264480C2
RU 2070607 C1, 20.12.1996
Двухместная вагонная скамья с средней 1929
  • Копытов И.Ф.
SU16704A1
Прибор, замыкающий сигнальную цепь при повышении температуры 1918
  • Давыдов Р.И.
SU99A1
US 7803234 B2, 28.09.2010.

RU 2 605 395 C1

Авторы

Криони Николай Константинович

Мингажев Аскар Джамилевич

Давлеткулов Раис Калимуллович

Мингажева Алиса Аскаровна

Измайлова Наиля Федоровна

Бахтиарова Евгения Вадимовна

Даты

2016-12-20Публикация

2015-06-29Подача