ЭПОКСИВИНИЛЭФИРНАЯ КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ МЕТОДОМ ВАКУУМНОЙ ИНФУЗИИ Российский патент 2017 года по МПК C08L67/06 C08K5/98 

Описание патента на изобретение RU2606442C1

Изобретение относится к области создания эпоксивинилэфирной композиции и может быть использовано для изготовления изделий из полимерных композиционных материалов (ПКМ) методом вакуумной инфузии, в том числе с использованием наполнителя, изготовленного методом плетения, в автомобилестроении, химическом машиностроении, энергетической, строительной, машиностроительной, судостроительной авиационной индустриях и других областях техники.

Из уровня техники известно двухкомпонентное полиэфирное связующее, состоящее из ненасыщенной полиэфирной смолы ПН-15 и отверждающей системы, которая представляет собой раствор анилино-формальдегидной смолы СФ-342А в ацетоне (патент РФ 2232175 С2, МПК C08L 67/06, C08K 13/02, В32В 17/12, опубл. 20.01.2004). К числу основных недостатков этого полиэфирного связующего следует отнести использование инертного органического растворителя в составе отверждающей системы, что негативно сказывается на процессе формирования материалов из него, поскольку удаление летучих продуктов приводит к образованию пористой структуры изделия, характеризующейся невысокими показателями прочности. Кроме того, использование полиэфирной смолы из-за особенностей ее химической природы приводит к формированию полимерной матрицы в ПКМ с высоким уровнем остаточных напряжений и значительной степенью усадки отвержденных конечных материалов.

Известна эпоксивинилэфирная композиция, содержащая в своем составе эпоксивинилэфирную смолу марки DION 9102-70, ускоритель нафтиенат кобальта и отвердитель IRIGA Cure 819 (заявка ЕР 2708572 A1, МПК C08J 5/24, В32В 5/26; опубл. 19.03.2014). Композиция представляет собой однокомпонентное УФ-отверждаемое связующее, чрезвычайно чувствительное к проникающему солнечному излучению, что сильно усложняет процесс его переработки в ПКМ, особенно в летнее время. Кроме того, оно имеет ограниченное использование для создания изделий на основе волокнистых угленаполнителей, так как у этих материалов отсутствует оптическая прозрачность.

Наиболее близким техническим решением по совокупности существенных признаков и достигаемому техническому результату, принятым за прототип, является двухкомпонентная эпоксивинилэфирная композиция, получаемая совмещением 100,0 мас.ч. эпоксивинилэфирной основы и 3,0 мас.ч. отвердителя пероксидного типа. Эпоксивинилэфирная основа содержит: 98,768 мас.% эпоксивинилэфирной смолы, инициатор - смесь ацетоацетамида (0,987 мас.%) и раствора нафтената меди (0,237 мас.%), 0,008 мас.% ингибитора фенольного типа - раствора трет-бутилкатехола. В качестве отвердителя пероксидного типа используется органический пероксид - метилэтилкетон (патент US 8722770 В2, МПК C08L 67/00, C08K 5/07, C08L 67/06, C08L 33/04; опубл. 13.05.2014).

Недостатками указанного прототипа являются: плохое сохранение технологических характеристик (вязкость, время гелеобразования) в процессе продолжительного хранения при температуре 25°С, невысокие прочностные характеристики и нестабильность физико-механических свойств отвержденных материалов (прочность при статическом изгибе), растрескивание и коробление поверхности образцов после отверждения, а также ограниченность его использования для изготовления толстостенных изделий из ПКМ.

Технической задачей предлагаемого изобретения является создание двухкомпонентной эпоксивинилэфирной композиции, обеспечивающей стабильность технологических характеристик в процессе продолжительного хранения при температуре 25°С, обладающей повышенными прочностными свойствами и небольшим коэффициентом вариации физико-механических характеристик отвержденных материалов, образующей бездефектные образцы, без растрескивания и коробления в процессе отверждения, пригодной для изготовления толстостенных изделий.

Техническим результатом настоящего изобретения является сохранение вязкости и времени гелеобразования композиции в процессе продолжительного хранения при температуре 25°С, повышение прочности при статическом изгибе.

Поставленный технический результат достигается тем, что предлагается эпоксивинилэфирная композиция для полимерных композиционных материалов, содержащая эпоксивинилэфирную основу, включающую эпоксивинилэфирную смолу, иницииатор, раствор ингибитора фенольного типа и отвердитель пероксидного типа - органический пероксид на основе метилэтилкетона, отличающаяся тем, что эпоксивинилэфирная основа в качестве инициатора содержит октоат кобальта и дополнительно содержит модификаторы - полиизоцианат, поверхностно-активное вещество и эластификатор.

Предпочтительно, в эпоксивинилэфирной основе содержание эпоксивинилэфирной смолы в мас.% составляет: 74,0-95,00.

Предпочтительно, в эпоксивинилэфирной основе содержание иницииатора в мас.% составляет: 0,05-2,50.

Предпочтительно, в эпоксивинилэфирной основе содержание раствора ингибитора в мас.% составляет: 0,5-12,0.

Предпочтительно, в эпоксивинилэфирной основе содержание полиизоцианата в мас.% составляет: 1,0-4,5.

Предпочтительно, в качестве полиизоцианата используют гексаметилендиизоцианат или толуилендиизоцианат.

Прдпочтительно, в эпоксивинилэфирной основе содержание поверхностно-активного вещества в мас.% составляет: 0,5-6,5.

Предпочтительно, в эпоксивинилэфирной основе содержание эластификатора в мас.% составляет: 0,5-10,0.

Предпочтительно, раствор ингибитора содержит соединения фенольного типа и органический растворитель при следующем соотношении компонентов, мас.%: соединение фенольного типа - 0,001-0,100; органический растворитель - 0,900-0,999.

Предпочтительно, в качестве соединения фенольного типа используют гидрохинон или трет-бутилкатехол, а в качестве органического растворителя используют метакрилат, или диаллиловый эфир ортофталевой кислоты, или диаллиловый эфир изофталевой кислоты, или дивинилбензол.

Предпочтительно, соотношение эпоксивинилэфирной основы и отвердителя пероксидного типа в конечной композиции составляет, мас.ч., 100:(1,5-4,5).

В качестве отвердителя пероксидного типа используют органический пероксид на основе метилэтилкетона, например Butanox LPT-INF, Norpol Peroxide 1 или Norpol Peroxide 14 и др.

Для получения эпоксивинилэфирной основы в качестве эпоксивинилэфирной смолы используют смолу, например, DION 9700, Daron ХР45-А-2, Derakane 470-300 или и др., а в качестве инициатора октоата кобальта используют, например, Accelerator 553S, Norpol 9802 или Accelerator NL-49P и др.

В качестве поверхностно-активного вещества (ПАВ) используют один ПАВ, выбранный из ряда BYK А-560, BYK W-909, BYK 330 и др. или их смеси.

В качестве эластификаторов используют эпоксивинилэфиры, содержащие в своей структуре разветвленные углеродные цепи, например Derakane 8084 Primer, Corobond Conductive Primer или Duratec Primer и др.

В качестве полиизоцианата используют гексаметилендиизоцианат или толуилендиизоцианат, также могут использовать полиизоцианат ПИЦ.

Авторами установлено, что используемая в составе композиции, известной из прототипа, в качестве инициаторов смесь ацетоацетамида и нафтената меди ввиду их высокой каталитической активности, обусловленной образованием в ходе их взаимодействия большого количества активных центров, приводит к автокаталитической полимеризации эпоксивинилэфирной основы в процессе хранения даже в отсутствие отвердителя пероксидного типа. В результате чего происходит сшивание олигомерных фрагментов эпоксивинилэфирной основы, которое сначала приводит к увеличению молекулярной массы отдельных цепных структур, а затем формируется единая трехмерная структура, что приводит к существенному снижению времени гелеобразования и значительному росту вязкости приготовленного связующего с использованием эпоксивинилэфирной основы длительного хранения. Используемый в предлагаемом изобретении инициатор октоат кобальта благодаря своей химической природе обладает пониженной каталитической активностью и не снижает его жизнеспособности, что обеспечивает возможность длительного хранения эпоксивинилэфирной основы без значительного ухудшения основных технологических характеристик приготовленной композиции (вязкость, время гелеобразования).

Используемая в эпоксивинилэфирной основе композиции, известной из прототипа, в качестве инициаторов смесь ацетоацетамида и нафтената меди еще более активируется после совмещения с отвердителем пероксидного типа, что значительно ускоряет процесс отверждения и делает его чрезвычайно экзотермичным, в результате чего формируется дефектная полимерная структура ввиду неравномерного прогрева отдельных надмолекулярных фрагментов образующейся полимерной матрицы. В предлагаемом изобретении используется менее активный инициатор октоат кобальта, который способствует образованию равномерной морфологической полимерной структуры с вовлечением в химическое взаимодействие максимального количества реакционных групп и достижению высокой степени сшивания, что приводит к созданию бездефектной и равномерной полимерной структуры, обеспечивающей повышенные прочностные свойства и небольшой коэффициент вариации физико-механических характеристик отвержденных материалов.

Известно, что чем выше температура отверждения связующего, тем выше температура стеклования получаемого материала и больше его термостойкость. Однако температура, при которой происходит отверждение эпоксивинилэфирной композиции, определяется не только температурой выбранного режима отверждения, но и влиянием экзотермической теплоты, создаваемой в процессе самой реакции. Использование в составе эпоксивинилэфирной основы композиции, известной из прототипа, чрезвычайно активного инициатора отверждения (смесь ацетоацетамида и нафтената меди) в контакте с отвердителем пероксидного типа способствует энергичному процессу отверждения, сопровождающемуся значительным экзотермическим эффектом и ростом пиковой температуры до 155°С. Такой разогрев реакционной смеси, по утверждению авторов композиции-прототипа, способствует образованию достаточно термостойкого материала без использования высокотемпературных режимов отверждения. Однако в больших объемах отверждающейся эпоксивинилэфирной композиции будет выделятся больше теплоты, что ускорит реакцию и создаст еще большее количество теплоты, в результате чего смесь может разогреться выше температуры деструкции и возникнуть самовозгорание. В связи с этим отверждение композиции, известной из прототипа, производят тонкими слоями (до 0,5 мм) небольшой массы, чтобы экзотермическая теплота не выделялась достаточно активно, что ограничивает применение данной композиции для изготовления толстостенных изделий и конструкций. Использование в предлагаемой эпоксивинилэфирной композиции менее активного инициатора октоата кобальта, который в ходе совместного отверждения с отвердителем пероксидного типа не приводит к значительному выделению тепла при реакции отверждения, дает возможность использования изобретения в изделиях толщиной до 5 мм.

Задача повышения термостойкости предлагаемой композиции решена за счет использования модификатора теплостойкости - полиизоцианата. Полиизоцианат модифицирует эпоксивинилэфирную смолу за счет взаимодействия с гидроксильными группами, благодаря чему в ее структуре образуются функциональные уретановые группы, которые обеспечивают повышение жесткости и теплостойкости молекулярной цепи отвержденной полимерной матрицы, что способствует увеличению температуры стеклования.

Введение поверхностно-активного вещества (ПАВ) в эпоксивинилэфирную основу предлагаемой композиции позволяет уменьшить размеры эмульгированных частиц используемых олигомеров, увеличивая при этом поверхность контакта фаз смола - отвердитель пероксидного типа, что во время формообразования и роста полимера способствует увеличению степени протекания реакции и способствует тем самым образованию отвержденных полимеров с повышенными и стабильными физико-механическими характеристиками.

С целью снижения дефектности получаемых образцов в процессе формообразования и доотверждения, для устранения растрескивания и коробления отвержденных образцов предлагаемой композиции, в предлагаемом связующем используются гибкоцепные эластификаторы - эпоксивинилэфиры. Наличие в строении используемых эластификаторов разветвленных углеродных цепей в процессе отверждения связующего способствует образованию в формируемой структуре сетчатых блок-сополимеров, которые обеспечивают снижение локальных напряжений в формируемой полимерной матрице.

Соотношения компонентов в эпоксивинилэфирной основе подобраны экспериментальным путем.

Соотношение эпоксивинилэфирной основы и отвердителя пероксидного типа в конечной композиции составляет, мас.ч., 100:(1,5-4,5) и позволяет добиться получения эпоксивинилэфирных композиций для вакуумной инфузии с наиболее предпочтительным сочетанием технологических и физико-механических характеристик.

Пример 1. Получение раствора ингибитора для заявленной эпоксивинилэфирной композиции

Для получения раствора ингибитора в чистый и сухой реактор с термостатируемой рубашкой и сливным штуцером, снабженный мешалкой, загрузили 0,001 мас.% гидрохинона и 0,999 мас.% диаллилового эфира изофталевой кислоты. Включили мешалку и, перемешивая со скоростью 100 об/мин, нагревали до температуры 60±5°С и перемешивали при указанной температуре в течение не менее 120 мин до образования однородного раствора без видимых механических включений. Выключили мешалку и слили готовую раствора ингибитора через сливной штуцер в сухую чистую емкость.

Примеры 2-4

Изготовление раствора ингибитора выполняли аналогично примеру 1, но с другими компонентами и при соотношениях, приведенных в таблице 1.

Пример 5. Получение эпоксивинилэфирной основы для заявленной эпоксивинилэфирной композиции

Для получения эпоксивинилэфирной основы в чистый и сухой реактор с термостатируемой рубашкой и сливным штуцером, снабженный мешалкой, загрузили 95 мас.% эпоксивинилэфирной смолы Dion 9700, 0,05 мас.% инициатора Accelerator NL-49P, 0,5 мас.% раствора ингибитора, приготовленного по рецептуре примера №1 (табл. 1), 1,05 мас.% полиизоцианата ПИЦ, 1,4 мас.% поверхностно-активного вещества BYK А-560, 1,0 мас.% поверхностно-активного вещества BYK W-909 и 0,5 мас.% поверхностно-активного вещества BYK 330, 0,5 мас.% Derakane 8084 Primer. Включили мешалку и, перемешивая со скоростью 100 об/мин, нагревали до температуры 60±5°С. Перемешивали при указанной температуре со скоростью 100 об/мин в течение не менее 180 мин. Выключили мешалку и слили готовую эпоксивинилэфирную основу через сливной штуцер в сухой, чистый барабан из белой жести.

Примеры 6-12

Изготовление эпоксивинилэфирной основы выполняли аналогично примеру 5, но с другими компонентами и при соотношениях, приведенных в табл. 2.

Эпоксивинилэфирную композицию готовили непосредственно перед применением путем смешивания эпоксивинилэфирной основы и отвердителя пероксидного типа в заданном соотношении.

В табл. 3 приведены составы двухкомпонентной эпоксивинилэфирной композиции (примеры 13-20), а в табл. 4 - сравнительные свойства заявляемой композиции и прототипа. Как видно из табл. 4, предлагаемая двухкомпонентная эпоксивинилэфирной композиции имеет ряд преимуществ по сравнению с прототипом:

- является более технологичной, поскольку синтезированная из исходных компонентов, хранившихся в течение 90 дней при температуре 25°С, характеризуется более стабильными показателями сохранения вязкости и времени гелеобразования. Рост вязкости не превышает 10% от исходного показателя (коэффициент повышения вязкости композиции 1,0÷1,1), а сохранение показателя времени гелеобразования составляет не менее 95%. У прототипа же наблюдается значительное увеличение показателя вязкости до 50% (коэффициент повышения вязкости связующего 1,5), а сохранение показателя времени гелеобразования - 60%. Такой незначительный рост вязкости и показателя времени гелеобразования заявленной двухкомпонентной эпоксивинилэфирной композиции, обусловленный высокой химической стабильностью эпоксивинилэфирной основы при длительном хранении при температуре 25°С, дает возможность ее переработки в ПКМ по низкозатратной инфузионной технологии, а также способствует снижению энергозатрат на ее длительное транспортирование и хранение до момента переработки за счет исключения использования холодильной техники, что, в свою очередь, отражается на экономических показателях производства;

- обеспечивает высокие прочностные свойства отвержденной полимерной композиции: прочность при статическом изгибе 113-117 МПа благодаря использованию менее активного инициатора октоата кобальта и поверхностно-активных веществ. Достигнутые показатели на 13-17% превосходят физико-механические характеристики отвержденной композиции по прототипу. Кроме того, наблюдается снижение коэффициента вариации прочностных свойств разработанной полимерной композиции примерно в 2,0 раза по сравнению со значением у композиции-прототипа (Kкоэффициент вариации прототипа = 9,9; Kкоэффициент вариации разработанной композиции = 4,7÷5,0);

- характеризуется невысоким экзотермическим эффектом процесса отверждения, что обеспечивает возможность ее применения для изготовления толстостенных изделий и конструкций (до 5 мм), в отличие от композиции-прототипа, где наблюдается энергичный процесс отверждения, сопровождающейся значительным экзотермическим эффектом и ростом пиковой температуры, что ограничивает его использование для изготовления материалов толщиной свыше 0,5 мм;

- обеспечивает формирование бездефектных отвержденных образцов полимерной матрицы благодаря устранению возможного растрескивания и коробления отвержденных образцов предлагаемой композиции.

Похожие патенты RU2606442C1

название год авторы номер документа
ЭПОКСИВИНИЛЭФИРНОЕ СВЯЗУЮЩЕЕ, ПРЕПРЕГ И ИЗДЕЛИЕ ИЗ НЕГО 2015
  • Каблов Евгений Николаевич
  • Чурсова Лариса Владимировна
  • Соколов Игорь Иллиодорович
  • Бабин Анатолий Николаевич
  • Панина Наталия Николаевна
  • Лукина Анна Ираклиевна
  • Гребенева Татьяна Анатольевна
  • Цыбин Александр Игоревич
  • Гуревич Яков Михайлович
  • Никифоров Владимир Анатольевич
  • Тундайкин Константин Олегович
  • Герасименко Александр Андреевич
  • Рыбак Андрей Элекович
RU2615374C1
ПОЛИЭФИРНОЕ СВЯЗУЮЩЕЕ И ИЗДЕЛИЕ НА ЕГО ОСНОВЕ 2015
  • Каблов Евгений Николаевич
  • Чурсова Лариса Владимировна
  • Соколов Игорь Иллиодорович
  • Бабин Анатолий Николаевич
  • Панина Наталия Николаевна
  • Лукина Анна Ираклиевна
  • Цыбин Александр Игоревич
  • Гребенева Татьяна Анатольевна
  • Коваленко Антон Владимирович
  • Ткачук Анатолий Иванович
  • Герасименко Александр Андреевич
  • Рыбак Андрей Элекович
RU2608892C1
АНТИСТАТИЧЕСКОЕ СВЯЗУЮЩЕЕ ДЛЯ КОМПОЗИТНЫХ МАТЕРИАЛОВ 2017
  • Каравайченко Михаил Георгиевич
  • Ахметвалеев Ринат Рауфович
  • Шавалеева Гульназ Абдулхаевна
RU2680052C2
Полимерная композиция для пропитки при изготовлении стекло - органо - углепластиков 2016
  • Косолапов Алексей Федорович
  • Шацкая Татьяна Евгеньевна
  • Натрусов Владимир Иванович
  • Селезнев Вячеслав Александрович
  • Иванова Анна Константиновна
  • Савин Виктор Васильевич
  • Красильникова Вера Витальевна
RU2620806C1
СОСТАВ НАПЫЛЯЕМОГО ПОКРЫТИЯ 2006
  • Гахари Акбар
  • Жао Йифанг
RU2408635C2
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2004
  • Кленин Ю.Г.
  • Коробко А.П.
  • Пенская Т.В.
  • Сорина Т.Г.
  • Ушаков А.Е.
  • Хайретдинов А.Х.
RU2255097C1
Химически стойкое покрытие столешницы 2023
  • Бубенщиков Владимир Генадьевич
RU2815497C1
ТЕПЛОСТОЙКОЕ ТЕРМОРЕАКТИВНОЕ СВЯЗУЮЩЕЕ ДЛЯ ПОЛИМЕРНОЙ ОСНАСТКИ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 2018
  • Каблов Евгений Николаевич
  • Гуревич Яков Михайлович
  • Ткачук Анатолий Иванович
  • Кудрявцева Антонина Николаевна
  • Григорьева Клавдия Николаевна
  • Терехов Иван Владимирович
RU2686036C1
ОТВЕРЖДАЕМЫЕ ПЛЕНОЧНЫЕ КОМПОЗИЦИИ, СОДЕРЖАЩИЕ ГИДРОКСИЛЬНЫЕ ФУНКЦИОНАЛЬНЫЕ АКРИЛОВЫЕ ПОЛИМЕРЫ, СОЕДИНЕНИЯ БИС- МОЧЕВИНЫ И МНОГОСЛОЙНЫЕ КОМПОЗИЦИОННЫЕ ПОКРЫТИЯ 2018
  • Льюис, Джейсон Райан
  • Чжоу, Хунин
  • Лучански, Мэтью С.
  • Сваруп, Шанти
  • Бёргман, Джон У.
  • Джонс, Джастин
  • Кирби, Даниэль
RU2734931C1
ПОЛИМЕРНАЯ АНТИКОРРОЗИОННАЯ КОМПОЗИЦИЯ ДЛЯ ЗАЩИТЫ ОТ КОРРОЗИИ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ 2009
  • Ларьков Андрей Петрович
RU2407756C1

Реферат патента 2017 года ЭПОКСИВИНИЛЭФИРНАЯ КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ МЕТОДОМ ВАКУУМНОЙ ИНФУЗИИ

Изобретение относится к эпоксивинилэфирной композиции и может быть использовано для изготовления изделий из полимерных композиционных материалов методом вакуумной инфузии, в том числе с использованием наполнителя, изготовленного методом плетения, в автомобилестроении, химическом машиностроении, энергетической, строительной, машиностроительной, судостроительной, авиационной индустриях и других областях техники. Эпоксивинилэфирная композиция содержит эпоксивинилэфирную основу, включающую эпоксивинилэфирную смолу, иницииатор, ингибитор фенольного типа и отвердитель пероксидного типа - органический пероксид на основе метилэтилкетона. При этом эпоксивинилэфирная основа в качестве инициатора содержит октоат кобальта и дополнительно содержит модификаторы - полиизоцианат, поверхностно-активное вещество и эластификатор. Обеспечивается сохранение вязкости и времени гелеобразования композиции в процессе продолжительного хранения при температуре 25°С и повышение прочности при статическом изгибе. 10 з.п. ф-лы, 4 табл., 12 пр.

Формула изобретения RU 2 606 442 C1

1. Эпоксивинилэфирная композиция для полимерных композиционных материалов, содержащая эпоксивинилэфирную основу, включающую эпоксивинилэфирную смолу, инициатор, раствор ингибитора фенольного типа и отвердитель пероксидного типа - органический пероксид на основе метилэтилкетона, отличающаяся тем, что эпоксивинилэфирная основа в качестве инициатора содержит октоат кобальта и дополнительно содержит модификаторы - полиизоцианат, поверхностно-активное вещество и эластификатор.

2. Эпоксивинилэфирная композиция по п.1, отличающаяся тем, что в эпоксивинилэфирной основе содержание эпоксивинилэфирной смолы составляет 74,0-95,00 мас.%.

3. Эпоксивинилэфирная композиция по п.1, отличающаяся тем, что в эпоксивинилэфирной основе содержание инициатора составляет 0,05-2,50 мас.%.

4. Эпоксивинилэфирная композиция по п.1, отличающаяся тем, что в эпоксивинилэфирной основе содержание раствора ингибитора составляет 0,5-12,0 мас.%.

5. Эпоксивинилэфирная композиция по п.1, отличающаяся тем, что в эпоксивинилэфирной основе содержание полиизоцианата составляет 1,0-4,5 мас.%.

6. Эпоксивинилэфирная композиция по п.1, отличающаяся тем, что в качестве полиизоцианата используют гексаметилендиизоцианат или толуилендиизоцианат.

7. Эпоксивинилэфирная композиция по п.1, отличающаяся тем, что в эпоксивинилэфирной основе содержание поверхностно-активного вещества составляет 0,5-6,5 мас.%.

8. Эпоксивинилэфирная композиция по п.1, отличающаяся тем, что в эпоксивинилэфирной основе содержание эластификатора составляет 0,5-10,0 мас.%.

9. Эпоксивинилэфирная композиция по п. 1, отличающаяся тем, что раствор ингибитора содержит соединения фенольного типа и органический растворитель при следующем соотношении компонентов, мас.%: соединение фенольного типа - 0,001-0,100; органический растворитель - 0,900-0,999.

10. Эпоксивинилэфирная композиция по п.9, отличающаяся тем, что в качестве соединения фенольного типа используют гидрохинон или третбутилкатехол, а в качестве органического растворителя используют метакрилат, или диаллиловый эфир ортофталевой кислоты, или диаллиловый эфир изофталевой кислоты, или дивинилбензол.

11. Эпоксивинилэфирная композиция по п. 1, отличающаяся тем, что соотношение эпоксивинилэфирной основы и отвердителя пероксидного типа в конечной композиции составляет, мас.ч., 100:(1,5-4,5).

Документы, цитированные в отчете о поиске Патент 2017 года RU2606442C1

US 8722770 B2, 13.05.2014
ПОЛИМЕРНОЕ ВЯЖУЩЕЕ ДЛЯ ПОЛИМЕРБЕТОНА 2013
  • Ерофеев Владимир Трофимович
  • Мышкин Антон Владимирович
  • Богатов Андрей Дмитриевич
  • Казначеев Сергей Валерьевич
  • Сальникова Анжелика Игорьевна
RU2550872C2
ЭПОКСИДНАЯ КОМПОЗИЦИЯ ДЛЯ ПОКРЫТИЯ 2007
  • Куценко Геннадий Васильевич
  • Зиновьев Василий Михайлович
  • Зрайченко Любовь Ивановна
  • Бережная Ольга Николаевна
  • Горшкова Людмила Михайловна
  • Саидова Светлана Нагимьяновна
  • Булатов Денис Альбертович
RU2360938C1
ПОЛИМЕРНОЕ СВЯЗУЮЩЕЕ И ПОЛИМЕРНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ЕГО ОСНОВЕ 2002
  • Муханова Е.Е.
  • Каблов Е.Н.
  • Минаков В.Т.
  • Лямина И.Н.
  • Деев И.С.
  • Засыпкин В.В.
  • Крутий В.Н.
  • Бакина Е.А.
  • Маленков А.В.
RU2237688C2
WO 9943390 A1, 02.09.1999
RU 2007127340 A, 27.01.2009.

RU 2 606 442 C1

Авторы

Каблов Евгений Николаевич

Чурсова Лариса Владимировна

Бабин Анатолий Николаевич

Раскутин Александр Евгеньевич

Коган Дмитрий Ильич

Панина Наталия Николаевна

Цыбин Александр Игоревич

Гребенева Татьяна Анатольевна

Ткачук Анатолий Иванович

Даты

2017-01-10Публикация

2015-09-02Подача