ПОЛИЭФИРНОЕ СВЯЗУЮЩЕЕ И ИЗДЕЛИЕ НА ЕГО ОСНОВЕ Российский патент 2017 года по МПК C08L31/08 C08J5/24 C08J5/04 C08K3/00 C08K5/00 

Описание патента на изобретение RU2608892C1

Изобретение относится к области создания полимерных связующих на основе полиэфирного олигомера с наполнителем в виде коротких волокон для полимерных композиционных материалов (ПКМ), получаемых из листового полуфабриката (SMC-препрега) методом прямого прессования (sheet molding compound - SMC-технологии), которые могут быть использованы для изготовления экономически эффективных деталей, элементов интерьера и корпусов транспорта, имеющих улучшенные эксплуатационные и прочностные характеристики.

Из уровня техники известен композиционный материал на основе полиэфирной смолы, состоящий из ненасыщенной полиэфирной смолы ПН-15 и отверждающей системы, которая представляет собой раствор анилино-формальдегидной смолы СФ-342А в ацетоне (RU 2232175 С2, C08L 67/06, опубл. 10.07.2004).

Основным недостатком этого материала является наличие инертного органического растворителя в составе отверждающей системы, что негативно сказывается на процессе формирования изделия из него, поскольку удаление летучих продуктов приводит к образованию пористой структуры ПКМ, характеризующегося невысокими показателями прочности.

Известна полимерная композиция, армированная стекловолокном, содержащая полиэфирный олигомер, полиэтилентерефталат и антипирен галогенового ряда (хлорбензол, бромбензол и т.п.) (US 3671487 А, C08K 5/03, опубл. 20.06.1972). Полученный материал имеет температуру тепловой деформации 207°С.

В качестве основного недостатка этой композиции является ее низкие экологические характеристики в связи с наличием антипиренов галогенового ряда, что ограничивает их применение в обитаемых помещениях.

Наиболее близким техническим решением по совокупности существенных признаков и достигаемому техническому результату, принятым за прототип, является полиэфирное связующее, включающее: ортофталевую ненасыщенную полиэфирную смолу - 16,10 масс. %, термопласт на основе винилацетата: поливинилацетат - 10,00 масс. %, отвердитель пероксидного типа: трет-бутилпероксибензонат - 0,28 масс. %, ингибитор фенольного типа: пара-бензохинон - 0,003 масс. %, загуститель: оксид магния - 0,20 масс. %, антипирен: смесь гидроксида алюминия - 59,20 масс. %, цианурата меламина - 9,10 масс. % и бората цинка - 3,9 масс. %, и разделитель: стеарат кальция -1,217 масс. %.

Препрег, включающий указанное полиэфирное связующее и рубленый стекловолоконный наполнитель, при соотношении компонентов: связующее - 88,46 масс. %, наполнитель - 11,54 масс. %. Изделие из листового пресс-материала (препрега) получают по технологии термореактивного формования (CN 101343407 A, C08J 5/04, опубл. 14.01.2009).

Недостатками указанного прототипа являются его высокая стоимость, низкий уровень технологических характеристик полиэфирного связующего (высоковязкая композиция), что затрудняет процесс его переработки в ПКМ, а также низкая температура тепловой деформации отвержденной композиции, что понижает сопротивление этого материала к распространению огня, а также и низкие физико-механические и деформационно-прочностные характеристики (предел прочности при статическом изгибе и ударная вязкость) изделий из ПКМ, изготовленных из препрега на основе связующего.

Технической задачей заявленного изобретения является создание экономически эффективного полиэфирного связующего с улучшенными технологическими характеристиками (композиция с пониженной вязкостью), с повышенной температурой тепловой деформации отвержденной композиции, а также с высокими физико-механическими и деформационно-прочностными характеристиками (предел прочности при статическом изгибе и ударная вязкость) создаваемых изделий из ПКМ, изготовленных из SMC-препрега на основе связующего.

Техническим результатом настоящего изобретения является создание дешевого низковязкого полиэфирного связующего, повышение температуры тепловой деформации отвержденной композиции, увеличение предела прочности при статическом изгибе и ударной вязкости создаваемых изделий из ПКМ.

Поставленный технический результат достигается тем, что предлагается полиэфирное связующее, содержащее в качестве основы полиэфирную смолу, отвердитель пероксидного типа, ингибитор фенольного типа, термопласт на основе винилацетата, антипирен, загуститель - оксид магния, при этом в качестве полиэфирной смолы содержится изофталевая ненасыщенная полиэфирная смола, в качестве отвердителя, ингибитора и термопласта используются их растворы в органическом растворителе, в качестве антипирена - гидроксид алюминия и дополнительно содержатся модификаторы - поверхностное активное вещество и неорганический минеральный наполнитель, при следующем соотношении компонентов, масс. %:

изофталевая ненасыщенная полиэфирная смола 25,0-40,0 раствор отвердителя 2,0-6,5 раствор ингибитора 0,0001-0,1000 раствор термопласта 0,2-6,5 поверхностное активное вещество 0,15-3,00 гидроксид алюминия 27-42 оксид магния 0,05-0,80 неорганический минеральный наполнитель 15-30

Полиэфирное связующее может дополнительно содержать стеарат цинка в количестве 0,5-2,5 масс. % от всей композиции.

Предложен также SMC-препрег (листовой полуфабрикат), включающий указанное полиэфирное связующее и рубленый волокнистый наполнитель при следующем соотношении компонентов, масс. %:

полиэфирное связующее 75,0-85,0, рубленый волокнистый наполнитель 15,0-25,0

В качестве рубленого волокнистого наполнителя могут использоваться стекловолокна, углеволокна.

Изделие изготавливают путем прямого прессования листового полуфабриката (SMC-препрега) при повышенной температуре.

Авторами установлено, что содержание в составе композиции-прототипа большого количества твердых наполнителей по отношению к жидкой смоляной фазе (~83:17 масс. %), а также применение безрастворной технологии при введении в полимерную смесь отвердителя, ингибитора и термопласта способствуют повышенной вязкости связующего, что затрудняет процесс ее переработки в ПКМ. Предлагаемая полиэфирная композиция с установленным экспериментальным путем оптимальным соотношением между смоляной составляющей и твердыми наполнителями (~60:40 масс. %), а также использование для улучшения процесса совмещения компонентов низкоконцентрированных растворов отвердителя, ингибитора и термопласта в активных растворителях обеспечивают более низкие вязкостные характеристики, что повышает ее технологичность и упрощает процесс получения препрега и переработки в ПКМ.

В качестве отвердителя композиции по прототипу используется отвердитель пероксидного типа - трет-бутилпероксибензонат, который ввиду своей низкой термической стабильности активизирует процесс отверждения полимерных композиций уже при температуре до 90°С, что приводит к образованию отвержденных материалов с невысокими температурами тепловой деформации (до 240°С). Использование для формования разработанного материала отвердителя пероксидного типа с повышенной термической стабильностью - пероксида дикумила - обеспечивает возможность проводить отверждение при температуре 150°С и создавать более термостойкие материалы (температура тепловой деформации до 310°С) с повышенным сопротивлением к распространению огня. Более высокая температура тепловой деформации предлагаемого материала дает возможность ограничиться использованием в качестве антипирена только гидроксида алюминия, не прибегая к более дорогостоящим веществам, снижающим горючесть материала.

В состав композиции, известной из прототипа, включена ортоориентированная полиэфирная смола, что приводит к получению отвержденного материала с жесткой пространственной структурой, а наличие в предлагаемом материале полиэфирного олигомера, ориентированного в метаположении, позволяет получать менее напряженную отвержденную полимерную структуру, характеризующуюся повышенной ударной прочностью.

Процессы полимеризации, инициируемые отвердителями пероксидного типа, характеризуются высокой скоростью. При разложении отвердителей возможно образование мелких пузырьков кислорода, создающих в микроскопических областях формирующегося материала локальные перегревы. Это может привести к возникновению нежелательных пор в структуре отвержденных ПКМ, полученных из SMC-препрегов, и снижению прочностных характеристик получаемых материалов (прочность при статическом изгибе). Поэтому в разработанное полиэфирное связующее вводят незначительные количества поверхностно-активных веществ, которые выполняют функции деаэратора, а также способствуют увеличению адгезии на границе раздела фаз «полимерная матрица - наполнитель».

Разработанное полиэфирное связующее содержит большое количество доступных и недорогих минеральных наполнителей, что делает ее использование для создания изделий экономически выгодным.

Дополнительное введение стеарата цинка в количестве 0,5-2,5% от всей композиции полиэфирного связующего способствует улучшению отделения готовых изделий от оснастки.

Для получения полиэфирного связующего:

- в качестве изофталевой полиэфирной смолы используют смолы, выбранные из ряда, например, Synthopan 781-60, Dion 6631, Vipel F737 и др;

- в качестве раствора отвердителя используют раствор отвердителя пероксидного типа в органическом растворителе при следующем соотношении компонентов, масс. %: отвердитель пероксидного типа – 15-30; органический растворитель – 70-85. В качестве отвердителя пероксидного типа используют органический пероксид, например пероксид дикумила, а в качестве органического растворителя используют один растворитель, выбранный из ряда диаллиловый эфир ортофталевой кислоты, диаллиловый эфир изофталевой кислоты или стирол и др.;

- в качестве раствора ингибитора используют раствор соединения фенольного типа в органическом растворителе при следующем соотношении компонентов, масс. %: соединение фенольного типа – 20-40; органический растворитель – 60-80. В качестве ингибитора используется одно соединение фенольного ряда, выбранное из, например, гидрохинон, трет-бутилкатехол и др., а в качестве органического растворителя используют один растворитель, выбранный из ряда, например, метакрилат, диаллиловый эфир ортофталевой кислоты или дивинилбензол и др.;

- в качестве раствора термопласта используют раствор полимерных соединений на основе винилацетата в органическом растворителе при следующем соотношении компонентов, масс. %: полимерное соединение на основе винилацетата - 30÷70; органический растворитель - 30÷70. В качестве термопласта используют одно полимерное соединение на основе винилацетата, выбранное из ряда, например, Vinnapas С341, Vinnapas 5010N, Vinnapas 5044 и др., а в качестве органического растворителя используют один растворитель, выбранный из ряда, например, метакрилат, диаллиловый эфир ортофталевой кислоты, стирол и др.;

В качестве поверхностного активного вещества (ПАВ) используют один ПАВ, выбранный из ряда, например, BYK А-560, BYK 330, BYK-370 и др. или их смеси.

В качестве гидроксида алюминия используют гидроксид алюминия, выбранный из материалов, имеющихся на сырьевом рынке, рекомендованных в качестве антипиренов, например гидроксид алюминия «Фрамиал К05», гидроксид алюминия «Фрамиал К» и др.

В качестве оксида магния используют порошок оксида магния.

В качестве стеарата цинка используют порошок стеарата цинка.

В качестве неорганического минерального наполнителя используется один наполнитель, выбранный из ряда, например, измельченный речной песок, карбонат кальция, слюда и др.

Соотношение используемых компонентов в предлагаемом изобретении установлены экспериментальным путем и позволяют добиться получения полиэфирных композиций для SMC-технологии с наиболее предпочтительным сочетанием технологических и физико-механических характеристик.

Получение раствора ингибитора для заявленной полиэфирной композиции

Пример 1

Для получения раствора ингибитора в чистый и сухой реактор с термостатируемой рубашкой и сливным штуцером, снабженный мешалкой, загрузили 20,0 масс. % гидрохинона и 80,0 масс. % диаллилового эфира ортофталевой кислоты. Включили мешалку и, перемешивая со скоростью 100 об/мин, нагревали до температуры (60±5)°С. Перемешивали при указанной температуре в течение не менее 120 мин до образования однородного раствора без видимых механических включений. Выключили мешалку и слили готовый раствор ингибитора через сливной штуцер в сухую чистую емкость.

Примеры 2-3

Изготовление раствора ингибитора выполняли аналогично примеру 1, но с другими компонентами и при соотношениях, приведенных в таблице 1.

Получение раствора термопласта для заявленной полиэфирной композиции

Пример 4

Для получения раствора термопласта в чистый и сухой реактор с термостатируемой рубашкой и сливным штуцером, снабженный мешалкой, загрузили 70,0 масс. % диаллилового эфира изофталевой кислоты. Затем включили мешалку и обогрев, перемешивали со скоростью 100 об/мин с внесением 30,0 масс. % порошка термопласта VINNAPAS 5044 при температуре (70±5)°С в течение не менее 90 мин до образования однородного раствора без видимых механических включений. Выключили мешалку и слили готовый раствор термопласта через сливной штуцер в сухую чистую емкость.

Примеры 5-6

Изготовление раствора термопласта выполняли аналогично примеру 4, но с другими компонентами и при соотношениях, приведенных в таблице 2.

Получение раствора отвердителя для заявленной полиэфирной композиции

Пример 7

Для получения раствора отвердителя в чистый и сухой реактор со сливным штуцером, снабженный мешалкой, загрузили 85,0 масс. % диаллилового эфира ортофталевой кислоты. Затем включили мешалку и перемешивали со скоростью 100 об/мин с внесением 15,0 масс. % пероксида дикумила при температуре (25±5)°С в течение не менее 90 мин до образования однородного раствора без видимых механических включений. Выключили мешалку и слили готовый раствор отвердителя через сливной штуцер в сухую чистую емкость.

Примеры 8-9

Изготовление раствора отвердителя выполняли аналогично примеру 7, но с другими компонентами и при соотношениях, приведенных в таблице 3.

Получение заявленного полиэфирного связующего

Пример 10

В чистый и сухой смеситель загрузили 15,0 масс. % полиэфирной смолы Synthopan 781-60, 0,0001 масс. % раствора ингибитора (приготовленного по рецептуре примера №1), 6,5 масс. % раствора термопласта (приготовленного по рецептуре примера №4), 6,5 масс. % раствора отвердителя (приготовленного по рецептуре примера №7), 0,9999 масс. % BYK А-560, 0,5000 масс. % BYK 330 и 0,2000 масс. % BYK 370. Включили перемешивание и обогрев. Перемешивали со скоростью 100 об/мин при температуре (40±5)°С в течение 1 ч. Затем добавили в реакционную массу 27 масс. % гидроксида алюминия, 30 масс. % карбоната кальция, 2,5 масс. % стеарата цинка и 0,8 масс. % оксида магния. Полученную массу перемешивали со скоростью 100 об/мин при температуре (50±5)°С до образования однородной смеси без заметных крупных агрегатов неорганических наполнителей (комков) в течение 1 ч.

Примеры 11-17

Изготовление полиэфирного связующего выполняли аналогично примеру 10, но с другими компонентами и при соотношениях, приведенных в таблице 4.

Получение заявленного препрега

Пример 18.

Получение SMC-препрега осуществлялось на установке для производства SMC с автоматизированной системой дозирования путем совмещения 75 масс. % полиэфирного связующего, приготовленного по рецептуре примера 10 (табл. 4) при температуре 25°C с 25 масс. % рубленого стекловолоконного наполнителя. Полиэфирное связующее наносилось на 2 полотна полиэтиленовой пленки при помощи дозирующей ванночки с раклей. Одновременно со шпулярника в рубящее устройство подавался стеклоровинг. Нижнее полотно пленки с нанесенным связующим подавалось под рубящее устройство, которое рубит рассыпающийся ровинг на отрезки заданной длины. Рубленое стекловолокно падало на пленку, а его количество регулировалось скоростью подачи пленки. После этого полученный пакет накрывался верхним полотном пленки с нанесенным слоем связующего. Полученный «сэндвич» пропускался через сжимающие валки для обеспечения пропитывания волокна. Готовый SMC-препрег сматывался в рулоны и дополнительно упаковывался в стиролонепроницаемую полиамидную пленку.

SMC-препреги для примеров 20, 22, 23 и 24 (табл. 5) изготавливали с использованием рубленого стекловолоконного наполнителя, а для примеров 19, 21 и 25 (табл. 5) - с использованием рубленого углеволоконного наполнителя аналогично примеру 18.

Изготовление заявленных изделий

Пример

Изготовление изделий из SMC-препрега, приготовленного по рецептуре примера 18 (табл. 5), осуществлялось методом прямого прессования в стальных обогреваемых закрытых формах на гидравлическом прессе (при давлении 80-100 атм). SMC-препрег нарезался в соответствие со схемой раскроя, укладывался в пакет и переносился в пресс-форму, повышали температуру до 150°С. После затвердевания, которое занимало около 5 минут, деталь вынимали из пресс-формы, удаляли облой и производили механическую обработку. Таким образом получали бампер грузового автомобиля.

На основании изготовленных SMC-препрегов по примерам 19-25 (табл. 5) по технологии, аналогичной примеру, изготавливали изделия: из SMC-препрега по примеру 19 - антивандальные наружные боковины кабины дорожной грузовой техники; по примерам 20 и 23 - дверки трансформаторного железнодорожного ящика; по примерам 22 и 24 - рабочую поверхность откидного столика; по примерам 21 и 25 - внутренние боковые панели локомотива.

Составы полиэфирных связующих по изобретению и прототипу, приведены в таблице 4, составы препрегов по изобретению и прототипу - в таблице 5, свойства связующих по заявленному изобретению и прототипу и ПКМ, изготовленных на их основе в таблице 6.

Сравнительные данные из таблицы 6 показывают, что предлагаемое полиэфирное связующее обеспечивает преимущества по сравнению с прототипом:

- заявленное полиэфирное связующее является более технологичным, поскольку характеризуется более низкими показателями вязкости (не более 75 Па⋅с при температуре 80°С), в отличие от связующего-прототипа (вязкость 120 Па⋅с при температуре 80°С). Такая низкая вязкость композиции обеспечивает улучшенную текучесть предлагаемой композиции при повышении температуры, и связующее успевает заполнить пресс-форму полностью за более короткое время, что упрощает технологический процесс его переработки в ПКМ;

- изделия, изготовленные из заявленного полиэфирного связующего, обладают повышенным сопротивлением к распространению огня, поскольку отвержденная предлагаемая композиция характеризуется более высокой температурой тепловой деформации (300÷310°С) в сравнении с прототипом (240°С). Полученные показатели на 25-29% превосходят термостойкость материала-прототипа, что способствует созданию более огнестойких ПКМ в отличие от прототипа;

- изделия, изготовленные из заявленного полиэфирного связующего, характеризуются повышенными физико-механическими и деформационно-прочностными характеристиками, поскольку демонстрируют более высокие показатели прочности (предел прочности при статическом изгибе 108÷114 МПа, ударная вязкость 65÷70 кДж/м2) в сравнении с материалом-прототипом (предел прочности при статическом изгибе 90 МПа, ударная вязкость 30 кДж/м2). Полученные характеристики материала на основе заявленного полиэфирного связующего более чем на 20% превосходят прочностные свойства материала-прототипа, что позволяет создавать на его основе деформационно-устойчивые изделия из ПКМ с более высоким уровнем конструкционной прочности, которые могут быть использованы для изготовления деталей, элементов интерьера и корпусов транспорта, имеющих улучшенные эксплуатационные характеристики;

- изделия и детали, изготовленные из заявленного полиэфирного связующего, являются более экономически эффективными по сравнению с материалами, изготавливаемыми из связующего прототипа, так как в качестве антипирена используется только гидроксид алюминия, а также содержится большое количество дешевого и доступного минерального наполнителя, например измельченного речного песка, карбоната кальция, слюды и др.

Похожие патенты RU2608892C1

название год авторы номер документа
ЭПОКСИВИНИЛЭФИРНОЕ СВЯЗУЮЩЕЕ, ПРЕПРЕГ И ИЗДЕЛИЕ ИЗ НЕГО 2015
  • Каблов Евгений Николаевич
  • Чурсова Лариса Владимировна
  • Соколов Игорь Иллиодорович
  • Бабин Анатолий Николаевич
  • Панина Наталия Николаевна
  • Лукина Анна Ираклиевна
  • Гребенева Татьяна Анатольевна
  • Цыбин Александр Игоревич
  • Гуревич Яков Михайлович
  • Никифоров Владимир Анатольевич
  • Тундайкин Константин Олегович
  • Герасименко Александр Андреевич
  • Рыбак Андрей Элекович
RU2615374C1
ЭПОКСИВИНИЛЭФИРНАЯ КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ МЕТОДОМ ВАКУУМНОЙ ИНФУЗИИ 2015
  • Каблов Евгений Николаевич
  • Чурсова Лариса Владимировна
  • Бабин Анатолий Николаевич
  • Раскутин Александр Евгеньевич
  • Коган Дмитрий Ильич
  • Панина Наталия Николаевна
  • Цыбин Александр Игоревич
  • Гребенева Татьяна Анатольевна
  • Ткачук Анатолий Иванович
RU2606442C1
НАНОСТРУКТУРИРОВАННЫЙ СТЕКЛОПЛАСТИК И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2017
  • Морозов Руслан Сергеевич
  • Колодницкая Наталья Владимировна
  • Осипов Василий Михайлович
RU2668030C1
НАНОСТРУКТУРИРОВАННЫЙ СТЕКЛОПЛАСТИК И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2017
  • Морозов Руслан Сергеевич
  • Колодницкая Наталья Владимировна
  • Осипов Василий Михайлович
RU2668029C1
Эпоксидное связующее, препрег и изделие, выполненное из них 2022
  • Гребенева Татьяна Анатольевна
  • Чурсова Лариса Владимировна
  • Панина Наталия Николаевна
  • Коган Дмитрий Ильич
  • Голиков Егор Ильич
  • Рябовол Дмитрий Юрьевич
RU2797591C1
СВЯЗУЮЩЕЕ ДЛЯ СТЕКЛОПЛАСТИКА И ПУЛТРУЗИОННЫЙ ПРОФИЛЬ ИЗ СТЕКЛОПЛАСТИКА 2012
  • Никулина Елена Аркадьевна
  • Микушин Владимир Иванович
RU2502602C1
ТЕПЛОСТОЙКОЕ ТЕРМОРЕАКТИВНОЕ СВЯЗУЮЩЕЕ ДЛЯ ПОЛИМЕРНОЙ ОСНАСТКИ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 2018
  • Каблов Евгений Николаевич
  • Гуревич Яков Михайлович
  • Ткачук Анатолий Иванович
  • Кудрявцева Антонина Николаевна
  • Григорьева Клавдия Николаевна
  • Терехов Иван Владимирович
RU2686036C1
ЭПОКСИДНОЕ СВЯЗУЮЩЕЕ, ПРЕПРЕГ НА ЕГО ОСНОВЕ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2017
  • Коган Дмитрий Ильич
  • Чурсова Лариса Владимировна
  • Гребенева Татьяна Анатольевна
  • Панина Наталия Николаевна
  • Уткина Татьяна Сергеевна
  • Цыбин Александр Игоревич
  • Голиков Егор Ильич
  • Байков Игорь Николаевич
RU2663444C1
ТРУДНОГОРЮЧИЙ ПОЛИМЕРНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ 2020
  • Беседин Вадим Петрович
RU2770071C1
ЭПОКСИДНОЕ СВЯЗУЮЩЕЕ, ПРЕПРЕГ НА ЕГО ОСНОВЕ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2017
  • Коган Дмитрий Ильич
  • Чурсова Лариса Владимировна
  • Гребенева Татьяна Анатольевна
  • Панина Наталия Николаевна
  • Уткина Татьяна Сергеевна
  • Цыбин Александр Игоревич
  • Голиков Егор Ильич
RU2655805C1

Реферат патента 2017 года ПОЛИЭФИРНОЕ СВЯЗУЮЩЕЕ И ИЗДЕЛИЕ НА ЕГО ОСНОВЕ

Изобретение относится к области создания полимерных связующих на основе полиэфирного олигомера с наполнителем в виде коротких волокон для полимерных композиционных материалов (ПКМ), получаемых из листового полуфабриката (SMC-препрега) методом прямого прессования, которые могут быть использованы для изготовления экономически эффективных деталей, элементов интерьера и корпусов транспорта. Полиэфирное связующее включает, мас.%: изофталевую ненасыщенную полиэфирную смолу - 25,0-40,0, раствор отвердителя - 2,0-6,5, раствор ингибитора - 0,0001-0,1000, раствор термопласта - 0,2-6,5, поверхностное активное вещество - 0,15-3,00, гидроксид алюминия – 27,0-42,0, оксид магния - 0,05-0,80, неорганический минеральный наполнитель – 15,0-30,0. SMC-препрег включает указанное полиэфирное связующее и рубленый волокнистый наполнитель при следующем соотношении, мас.%: полиэфирное связующее - 75,0-85,0, рубленый волокнистый наполнитель - 15,0-25,0. Техническим результатом является создание экономически эффективных изделий из ПКМ с повышенным сопротивлением к распространению огня и высокими пределом прочности при статическом изгибе и ударной вязкостью. 3 н. и 3 з.п. ф-лы, 6 табл.

Формула изобретения RU 2 608 892 C1

1. Полиэфирное связующее, содержащее в качестве основы полиэфирную смолу, отвердитель пероксидного типа, ингибитор фенольного типа, термопласт на основе винилацетата, антипирен, загуститель - оксид магния, отличающееся тем, что в качестве полиэфирной смолы содержится изофталевая ненасыщенная полиэфирная смола, в качестве отвердителя, ингибитора и термопласта используются их растворы в органическом растворителе, в качестве антипирена - гидроксид алюминия и дополнительно содержатся модификаторы - поверхностное активное вещество и неорганический минеральный наполнитель, при следующем соотношении компонентов, мас.%.:

изофталевая ненасыщенная полиэфирная смола 25,0-40,0 раствор отвердителя 2,0-6,5 раствор ингибитора 0,0001-0,1000 раствор термопласта 0,2-6,5 поверхностное активное вещество 0,15-3,00 гидроксид алюминия 27,0-42,0 оксид магния 0,05-0,80 неорганический минеральный наполнитель 15,0-30,0.

2. Полиэфирное связующее по п.1, отличающееся тем, что оно дополнительно содержит стеарат цинка в количестве 0,5-2,5 мас.% от всей композиции.

3. Препрег, включающий полиэфирное связующее и рубленый волокнистый наполнитель, отличающийся тем, что в качестве полиэфирного связующего используют связующее по п.1 при следующем соотношении компонентов, мас.%:

полиэфирное связующее 75,0-85,0 рубленый волокнистый наполнитель 15,0-25,0.

4. Препрег по п.3, отличающийся тем, что в качестве рубленого волокнистого наполнителя содержит рубленый волокнистый угленаполнитель.

5. Препрег по п.3, отличающийся тем, что в качестве рубленого волокнистого наполнителя содержит рубленый волокнистый стеклонаполнитель.

6. Изделие, отличающееся тем, что оно выполнено методом прямого прессования препрега по п.3.

Документы, цитированные в отчете о поиске Патент 2017 года RU2608892C1

CN 101343407 A1, 14.01.2009
WO 2007088055 A1, 09.08.2007
JPH 09188770 A1, 22.07.1997
Теплостойкая композиция 1975
  • Цутому Ватанабе
  • Тецуо Асо
SU659098A3
ЛИСТОВОЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1991
  • Эллиотт Томас Джордж[Gb]
RU2021303C1
СВЯЗУЮЩЕЕ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ПРЕПРЕГ НА ЕГО ОСНОВЕ 2013
  • Бабкин Александр Владимирович
  • Эрдни-Горяев Эрдни Михайлович
  • Кепман Алексей Валерьевич
  • Малахо Артем Петрович
  • Годунов Игорь Андреевич
  • Авдеев Виктор Васильевич
RU2532514C1

RU 2 608 892 C1

Авторы

Каблов Евгений Николаевич

Чурсова Лариса Владимировна

Соколов Игорь Иллиодорович

Бабин Анатолий Николаевич

Панина Наталия Николаевна

Лукина Анна Ираклиевна

Цыбин Александр Игоревич

Гребенева Татьяна Анатольевна

Коваленко Антон Владимирович

Ткачук Анатолий Иванович

Герасименко Александр Андреевич

Рыбак Андрей Элекович

Даты

2017-01-26Публикация

2015-11-13Подача