СПОСОБ ПОЛУЧЕНИЯ ОСТЕОПЛАСТИЧЕСКОГО МАТЕРИАЛА Российский патент 2017 года по МПК A61L27/36 A61F2/28 B01D15/40 

Описание патента на изобретение RU2609201C1

Изобретение относится к медицине, а именно к способу получения остеопластического материала путем обработки губчатой костной ткани, особенностью которого является то, что он предусматривает глубокую очистку и делипидизацию костного материала методом сверхкритической флюидной экстракции. Изобретение может применяться в травматологии, ортопедии, челюстно-лицевой хирургии, хирургической стоматологии при изготовлении медицинских изделий для лечения заболеваний и повреждений костной системы человека в качестве остеопластического материала для замещения костной ткани, а также в качестве наполнителя при потере объема костной ткани и биологического опорного каркаса для регенерации костной ткани.

Изобретение обеспечивает получение материала для остеопластики, а также повышение качества очистки костной ткани от жиров с целью снижения антигенности, повышения биосовместимости и остеоиндуктивных свойств за счет сохранения нативных белковых факторов роста. В конечном итоге применение остепластического материала, полученного этим способом, способствует ускорению процессов репарации и остеоинтеграции, а также сокращение сроков лечения и реабилитации больных.

Известен способ получения костного материала, описанный в патенте РФ 2326680. Предложен способ характеризуется тем, что исходную костную ткань после освобождения от мягких тканей и жира кипятят в дистиллированной воде в течение 40-80 часов, периодически меняя воду, и подвергают термообработке вначале при температуре от 250 до 300°C в течение 7 часов, затем при температуре от 350 до 395°C в течение от 3 до 18 часов, и измельчают во время кипячения или после кипячения. Помимо преимуществ этот способ обладает недостатками, самым очевидным среди которых является наличие стадии кипячения костного матрикса. Кипячение приводит к частичному разрушению коллагена костного матрикса, а также нативных морфогенетических белков, стимулирующих процессы репарации и остеоинтеграции, что приводит к снижению остеоиндуктивных свойств остеопластического материала.

Также существуют другие способы получения остеопластического матрикса. В патенте №2342162 способ включает этап гидролиза белков папаином и нейтрализацию получившегося материала. Недостатком этого способа является то, что обработка папаином может приводить к гидролизу факторов роста костной ткани и, следовательно, также снижению остеоиндуктивных свойств.

Недостатками обладают и другие способы получения остеопластических материалов, основанных на высокотемпературной обработке костной ткани. Так, например, способ, описанный в патенте РФ 2189823, подразумевает обжиг костной ткани при температуре 1200°С в течение 2-5 мин, что позволяет удалить остатки белков, в том числе и факторы роста.

Близким к заявляемому способу получения остеопластического материала является способ изготовления имплантатов из губчатой ткани, описанный в патенте РФ 2172104. Он заключается в том, что губчатая костная ткань проходит обработку раствором перекиси водорода, а затем обезжиривается в смеси этанола с хлороформом. Недостатком данного способа является применение хлороформа. Это повышает риск токсичности конечного медицинского изделия и опасность его применения.

Предлагаемый способ позволяет устранить недостатки, описанные выше.

Сущность способа состоит в том, что на этапе обезжиривания и очистки костного материала используется метод сверхкритической флюидной экстракции.

Цель данного изобретения - проведение глубокой и безопасной очистки костного матрикса от жира и костного мозга с сохранной структурой костного матрикса и нативными морфогенетическими белками за счет чего снижается антигенность материала, повышается его биосовместимость и остеоиндуктивность.

Технический результат достигается за счет того, что костные фрагменты на этапе обезжиривания и очистки подвергают обработке сверхкритическим диоксидом углерода. Он способен диффундировать в микропорах твердых матриц намного лучше, чем любые другие жидкости, и обладает хорошей способностью растворять липиды. При этом микропористость костной ткани становится гораздо доступнее, что дает возможность после этапа деминерализации высвободить нативные белковые факторы роста, тем самым, повысить остеокондуктивные свойства остеопластического материала после имплантации. Кроме того, метод сверхкритической флюидной экстракции безопасен и экологичен, поскольку не влечет за собой использование токсичных химических веществ. Данные, подтверждающие достижение технического результата изобретения, описаны в публикации Ю.В. Ефимова и соавт. [5]. В статье приведены результаты клинико-рентгенологического анализа результатов лечения 11 пациентов с дефицитом костной ткани. В качестве остеопластического применялся материал, разработанный на базе компании «Кардиоплант», обработанный заявленным способом. У всех пациентов осложнений в ближайшем и отдаленном периодах не наблюдалось. Было установлено, что через шесть месяцев новообразованная кость по своей структуре схожа с естественной костью. Результаты доказывают, что остеопластический матрикс имеет сохранную структуру костного матрикса, отсутствие антигенности, повышенные биосовместимость и остеоиндуктивность.

Способ получения остеопластического материала осуществляется следующим образом.

Губчатую кость получают от сельскохозяйственных животных по существующим правилам в течение 24 ч после смерти. После этого кость освобождают от мягких тканей распиливают на фрагменты необходимой величины. Полученные фрагменты выдерживают в гипертоническом солевом растворе хлористого натрия с концентрацией от 1% до 10% в течение 1-8 суток. Затем фрагменты костного материала помещают в ультразвуковую ванну с раствором перекиси водорода (от 1% до 10%) на 1-8 суток. Далее костные фрагменты подвергают очистке методом сверхкритической флюидной экстракции при температуре от 20°С до 70°С и давлении от 1000 до 10000 psi в течение от 30 до 500 мин. Затем, если необходимо, костные фрагменты подвергают деминерализации соляной кислотой (0,5-4 М) в течение от 15 до 300 мин. После этого деминерализованные или недеминерализованные костные фрагменты подвергают лиофилизации в течение 1-48 ч, упаковывают в газопроницаемую упаковку и стерилизуют. Таким образом, получают остеопластический материал.

Пример 1

Губчатую кость получают от сельскохозяйственных животных по существующим правилам в течение 24 ч после смерти. После этого кость освобождают от мягких тканей, распиливают на фрагменты необходимой величины. Полученные фрагменты выдерживают в гипертоническом солевом растворе хлористого натрия с концентрацией 2% в течение 2 суток. Затем фрагменты костного материала помещают в ультразвуковую ванну с раствором перекиси водорода (9%) на 2 суток. Далее костные фрагменты подвергают очистке методом сверхкритической флюидной экстракции при температуре 20°С и давлении 1000 psi в течение от 30 мин. Затем костные фрагменты подвергают деминерализации соляной кислотой (0,6 М) в течение от 40 мин. После этого деминерализованные или недеминерализованные костные фрагменты подвергают лиофилизации в течение 2 ч, упаковывают в газопроницаемую упаковку и стерилизуют.

Пример 2

Отличается от примера 1 тем, что фрагменты костного материала выдерживают в гипертоническом солевом растворе хлористого натрия с концентрацией 5% в течение 7 суток. Деминерализацию проводят соляной кислотой (2 М) в течение от 16 мин.

Пример 3

Отличается от примера 1 тем, что костные фрагменты подвергают очистке методом сверхкритической флюидной экстракции при температуре 30°С и давлении 3000 psi в течение от 100 мин.

Источники информации

1. Патент РФ №2172104. «Способ изготовления имплантатов из губчатой костной ткани».

2. Патент РФ №2189823. «Способ получения костного материала».

3. Патент РФ №2326680. «Способ получения депротеинизированного костного материала».

4. Патент РФ №2342162. «Способ получения биоматериалов из костной ткани и полученный этим способом материал для остеопластики и тканевой инженерии».

5. Ефимов Ю.В., Стоматов Д.В., Ефимова Е.Ю., Стоматов А.В., Алешанов К.А. Использование отечественного остеопластического материала Bio-Ost при синуслифтинге // Медицинский алфавит, 2016, №21, том №3, с 37-39.

Похожие патенты RU2609201C1

название год авторы номер документа
ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ИМПЛАНТАТА ДЛЯ ЗАМЕЩЕНИЯ КОСТНОЙ ТКАНИ 2019
  • Стогов Максим Валерьевич
  • Борзунов Дмитрий Юрьевич
  • Овчинников Евгений Николаевич
  • Чегуров Олег Константинович
  • Смоленцев Дмитрий Владимирович
  • Гурин Максим Вячеславович
RU2708639C1
ИМПЛАНТАТ ДЛЯ ЗАМЕЩЕНИЯ КОСТНОЙ ТКАНИ 2019
  • Стогов Максим Валерьевич
  • Борзунов Дмитрий Юрьевич
  • Овчинников Евгений Николаевич
  • Чегуров Олег Константинович
  • Смоленцев Дмитрий Владимирович
  • Гурин Максим Вячеславович
RU2712701C1
СПОСОБ ПОЛУЧЕНИЯ ОСТЕОПЛАСТИЧЕСКИХ БИОМАТЕРИАЛОВ ИЗ КОСТНОЙ ТКАНИ 2019
RU2721604C1
Способ изготовления костнопластического материала 2020
  • Воробьев Константин Александрович
  • Смоленцев Дмитрий Владимирович
  • Загородний Николай Васильевич
  • Губин Александр Вадимович
RU2746529C1
СПОСОБ ИЗГОТОВЛЕНИЯ ОСТЕОПЛАСТИЧЕСКОГО МАТЕРИАЛА ИЗ КОСТНОЙ ТКАНИ 2018
  • Сенотов Анатолий Сергеевич
  • Акатов Владимир Семенович
  • Фадеева Ирина Сергеевна
  • Кирсанова Полина Олеговна
  • Минайчев Владислав Валентинович
  • Фадеев Роман Сергеевич
RU2686309C1
БИОРЕЗОРБИРУЕМЫЙ БИОЛОГИЧЕСКИЙ МАТРИКС ДЛЯ ЗАМЕЩЕНИЯ ДЕФЕКТОВ КОСТНОЙ ТКАНИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2017
  • Веремеев Алексей Владимирович
  • Кутихин Антон Геннадиевич
  • Нестеренко Владимир Георгиевич
  • Болгарин Роман Николаевич
RU2665962C1
ЛИОФИЛИЗИРОВАННЫЙ БИОЛОГИЧЕСКИЙ БИОДЕГРАДИРУЕМЫЙ МИНЕРАЛИЗОВАННЫЙ КОСТНОПЛАСТИЧЕСКИЙ МАТЕРИАЛ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2019
  • Божкова Светлана Анатольевна
  • Тихилов Рашид Муртузалиевич
  • Лабутин Дмитрий Владимирович
  • Антипов Александр Павлович
RU2722266C1
СПОСОБ ОЧИСТКИ, МОДИФИКАЦИИ И СТЕРИЛИЗАЦИИ ПРОИЗВОДНЫХ КОСТНОЙ ТКАНИ И КОЖНОГО МАТРИКСА С ИСПОЛЬЗОВАНИЕМ СВЕРХКРИТИЧЕСКОГО ФЛЮИДА 2018
  • Веремеев Алексей Владимирович
  • Болгарин Роман Николаевич
  • Нестеренко Владимир Георгиевич
  • Сабирзянов Айдар Назимович
  • Кузнецова Ирина Валерьевна
  • Гильмутдинов Ильфар Маликович
  • Гильмутдинов Ильнур Ильсурович
  • Якушева Лилия Ильгизаровна
  • Сандугей Никита Сергеевич
RU2691983C1
СПОСОБ ПОЛУЧЕНИЯ ДЕМИНЕРАЛИЗОВАННОГО КОСТНОГО МАТРИКСА В ВИДЕ КРОШКИ 2011
  • Лунин Владимир Глебович
  • Карягина-Жулина Анна Станиславовна
  • Шарапова Наталья Евгеньевна
  • Ершова Анна Степановна
  • Громов Александр Викторович
  • Никитин Кирилл Евгеньевич
  • Субботина Марина Евгеньевна
  • Котнова Алина Петровна
  • Лаврова Наталья Витальевна
  • Семихин Александр Сергеевич
  • Соболева Любовь Александровна
  • Грунина Татьяна Михайловна
  • Овечкина Татьяна Андреевна
  • Бартов Михаил Сергеевич
  • Мишина Дарья Михайловна
  • Гинцбург Александр Леонидович
RU2456003C1
Способ получения биологически активных имплантатов 2016
  • Зайцев Владимир Валентинович
  • Бакулева Наталия Петровна
  • Чащин Иван Сергеевич
  • Васильев Максим Геннадьевич
  • Мартынов Алексей Дмитриевич
  • Поважный Дмитрий Борисович
  • Ханжин Максим Сергеевич
  • Лукина Юлия Сергеевна
RU2619870C1

Реферат патента 2017 года СПОСОБ ПОЛУЧЕНИЯ ОСТЕОПЛАСТИЧЕСКОГО МАТЕРИАЛА

Изобретение относится к медицине, а именно к способу получения остеопластического материала. Способ включает механическую очистку кости от мягких тканей и распиловку губчатой костной ткани, обработку гипертоническим раствором хлористого натрия с концентрацией 1-10% в течение 1-8 суток, помещение материала в ультразвуковую ванну с раствором перекиси водорода с концентрацией 1-10% на 1-8 суток, глубокую очистку и делипидизацию методом сверхкритической флюидной экстракции при температуре 20-70°С и давлении 1000-10000 psi в течение 30-500 минут, деминерализацию соляной кислотой 0,5-4 М в течение 15-300 минут и лиофилизацию в течение 1-48 часов. Технический результат – проведение глубокой и безопасной очистки костного матрикса, сохранение структуры костного матрикса и нативных морфогенетических белков, снижение антигенности, повышение биосовместимости и остекондуктивности. 3 пр.

Формула изобретения RU 2 609 201 C1

Способ получения остеопластического материала, включающий механическую очистку кости от мягких тканей и распиловку губчатой костной ткани, обработку гипертоническим раствором хлористого натрия с концентрацией 1-10% в течение 1-8 суток, помещение материала в ультразвуковую ванну с раствором перекиси водорода с концентрацией 1-10% на 1-8 суток, глубокую очистку и делипидизацию методом сверхкритической флюидной экстракции при температуре 20-70°С и давлении 1000-10000 psi в течение 30-500 минут, деминерализацию соляной кислотой 0,5-4 М в течение 15-300 минут и лиофилизацию в течение 1-48 часов.

Документы, цитированные в отчете о поиске Патент 2017 года RU2609201C1

FR 2866237 A1, 19.08.2005
US 5725579 A, 10.03.1998
СПОСОБ ИЗГОТОВЛЕНИЯ КОСТНОГО АЛЛОТРАНСПЛАНТАТА 1999
  • Лекишвили М.В.
  • Касымов Ильгар Абульфас Оглы
RU2147800C1
СПОСОБ КИСЛОТНОЙ ДЕМИНЕРАЛИЗАЦИИ КОСТНОЙ ТКАНИ ДЛЯ ТРАНСПЛАНТАЦИИ 2007
  • Савельев Владимир Ильич
  • Булатов Александр Анатольевич
  • Рыков Юрий Алексеевич
RU2356582C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИМПЛАНТАТОВ ИЗ ГУБЧАТОЙ КОСТНОЙ ТКАНИ 2000
  • Лекишвили М.В.
  • Михайлов А.Ю.
  • Васильев М.Г.
RU2172104C1
WO 2008157497 A2, 24.12.2008
FAGES J et al., Viral inactivation of human bone tissue using supercritical fluid extraction, ASAIO J
Способ и аппарат для получения гидразобензола или его гомологов 1922
  • В. Малер
SU1998A1

RU 2 609 201 C1

Авторы

Евдокимов Сергей Васильевич

Венедиктов Алексей Александрович

Гурин Максим Вячеславович

Благадырев Владислав Игоревич

Смоленцев Дмитрий Владимирович

Даты

2017-01-30Публикация

2015-08-14Подача