Экструзионный промывочный брикет для доменного производства Российский патент 2017 года по МПК C22B1/243 

Описание патента на изобретение RU2609888C1

Изобретение относится к области черной металлургии, а именно к получению экструзионного брикета, содержащего металлургические отходы, в частности металлургическую окалину, предназначенного для промывки горнов доменных печей.

Из уровня техники известны брикеты для промывки доменных печей, в частности, раскрытые в патентах RU 2294389 С1, опубл. 27.02.2007, и RU 2403295 C1, опубл. 10.11.2010. Известные брикеты содержат окалину в качестве железосодержащего материала, флюсовые материалы и цемент в качестве связующего. Недостатками известных брикетов являются недостаточные плотность, прочность и эффективность при использовании в качестве промывочного материала в доменной печи.

Известны также экструзионные брикеты для доменной плавки, изготовленные методом жесткой вакуумной экструзии из смеси прокатной окалины, цемента и флюсующих добавок (Бижанов A.M. и др. Исследование механической прочности БРЭКСа. Часть 2, Металлург, №10, 2012, с. 36-40).

Наиболее близким аналогом изобретения является экструзионный брикет для промывки доменной печи, раскрытый в патенте RU 2499061 С1, кл. С22В 1/243, опубл. 20.11.2013. Известный брикет изготовлен методом жесткой вакуумной экструзии из смеси техногенных и/или природных железосодержащих материалов (в т.ч. 70% прокатной окалины), минерального связующего (5% портландцемента) и флюсующих добавок. Плотность полученных брикетов 2,1-2,3 г/см3, прочность на раздавливание после вылеживания в течение 48 часов составила 5,5 МПа. При нагреве брикетов до температуры 1100°C в атмосфере 50% водорода и 50% азота со скоростью 500°C в час размягчение и оплавление начиналось при 1170°C. Недостатками известного брикета являются недостаточный промывочный эффект брикета.

Задачей изобретения является изготовление экструзионного брикета с заданным химическими характеристиками, позволяющими использовать его в качестве промывочного брикета в доменном производстве с целью увеличения времени кампании выплавки литейного чугуна в доменной печи с сохранением уровня производства за счет предотвращения зарастания металлоприемника печи и выпуска чугуна без потери его качественных свойств.

Технический результат изобретения заключается в получении брикетов однородного качества с высокими химическими и физическими свойствами, способствующих проведению качественных промывочных плавок горна доменной печи с получением чугуна без ухудшения его качества. Для достижения указанного технического результата заявленный брикет, полученный методом жесткой вакуумной экструзии из 93% окалины металлургического производства, 2% бентонита и 5% цемента и содержит, мас.%:

FeO >40 Fe2O3 >25 MgO 0,01-2,8 MnO 0,01-1,5 С 0,01-1,5 SiO2 0,1-9,0 CaO 0,1-8,0 Al2O3 0,01-1,2, примеси <3

при этом содержание Feобщ.>60, прочность на сжатие составляет не менее 5,0 МПа, удельная плотность - не менее 2,8 кг/дм3, открытая пористость - не менее 10%, а температура начала размягчения - не менее 1200°C.

Брикеты с указанным химическим составом и физическими свойствами способствуют окислению углерода в металлоприемнике доменной печи за счет его перевода в газообразную форму, при этом разрушаются конгломераты графитно-коксовых образований с последующим выносом их с жидкими продуктами плавки и восстанавливается объем металлоприемника.

Заявленный экструзионный промывочный брикет получают методом жесткой вакуумной экструзии при использовании окалины отдельного металлургического производства с соответствующим химическим составом, обеспечивающим получение брикета заданного состава. В частном случае возможна подготовка шихты с использованием окалины различных производств с соответствующим химсоставом, обеспечивающим достижение заданного химического состава.

Указанные элементы в оксидных формах обеспечивают высокие промывочные свойства шихтовых материалов, обеспечивая улучшение фильтруемости продуктов плавки через коксовую решетку.

Содержание Feобщ. более 60% (в том числе трудновосстановимого FeO>40%) обеспечивает окисление углерода в металлоприемнике доменной печи, переводя его в газообразную форму, тем самым разрушая конгломераты графитно-коксовых образований с последующим выводом их из печи. Содержание общего железа ниже 60% снижает ее промывочные свойства.

Содержание оксида магния в брикете в количестве до 2,8% обеспечивает дополнительную десульфурацию чугуна и образование гомогенного, полностью расплавленного жидкоподвижного шлака. Введение в брикет оксида магния более чем 2,8% повлечет за собой снижение механических свойств по причине образования в структуре сплава карбида железа.

Оксид марганца в количестве до 1,5%, взаимодействуя с твердым углеродом, образует карбид марганца, который частично растворяется в железе, повышая содержание марганца и углерода в чугуне. Другая часть оксида марганца переходит в шлак, обеспечивая улучшение высокотемпературных свойств и фильтруемости продуктов плавки через коксовую насадку. Увеличение содержания оксида марганца выше 1,5% вызывает снижение механических свойств чугуна и способствует образованию газовых пор в сочетании с высоким содержанием серы.

Углерод, содержащийся в брикете, способствует восстановлению легко восстановимых элементов из оксидных форм присутствующих в брикете. Ограничение содержания углерода в брикете в количестве не выше 1,5% обусловлено необходимостью окисления образовавшимся из FeO шлаком не углерода, содержащегося в брикете, а непосредственно накопившейся в горне коксовой мелочи.

Присутствие в брикете оксида кремния и алюминия способствуют выводу серы с отводящими газами в виде паров элементарной серы, сернистого газа (SO2), сероводорода и других газообразных соединений. Кроме того, восстановленный из оксидов кремний увеличивает жидкотекучесть продуктов плавки, но в случае указанного в таблице 1 уровня снижает пластичность и предел прочности чугуна.

Оксид кальция играет роль десульфуратора, удаляя серу из чугуна выводом в шлак, в виде сульфида кальция.

Брикет также содержит примеси ZnO, TiO2, Cr2O3, S, Р и прочие, общее содержание которых не превышает 3 мас.%.

Для получения брикета осуществляют смешивание окалины фракцией -3 мм с 2% бентонита, дополнительное смешивание в смесительном шнеке с одновременным добавлением воды с получением гомогенизированной шихты, выстаивание шихты от 8 до 24 часов, перемешивание шихты в двухвалковом смесителе с добавлением 5% цемента в качестве связующего и воды для достижения влажности шихты 12-15%, подачу в вакуумную камеру экструдера с предварительным уплотнением шихты в дозаторе экструдера и пропускание через экструдер, выполненный с фиксированной передней частью оси главного экструзионного шнека.

Технологический процесс получения брикетов методом жесткой вакуумной экструзии в присутствии связующего приведен далее с ссылкой на прилагаемую схему 1.

Позиции схемы:

1 - Участок приема сырья;

2 - Участок сепарации;

3 - Склад сырья после сепарации;

4 - Бункер №1;

5 - Бункер №2 (запасной);

6 - Бункер №3 (бентонит);

7 - Транспортер №1;

8 - Смеситель;

9 - Транспортер №2;

10 - Склад для отстоя подготовленной шихты;

11 - Приемный бункер для подготовленной шихты;

12 - Силос №1 накопительный;

13 - Силос №2 накопительный (запасной);

14 - Силос №3;

15 - Транспортер №3;

16 - Смеситель двухвалковый;

17 - Дозатор экструдера;

18 - Экструдер;

19 - Транспортер №4;

20 - Участок для готового брикета (ларь);

21 - Склад готовой продукции.

Участок сепарации. На данном участке производится предварительная сепарация исходных материалов по гранулометрическому составу для получения допустимых по размеру частиц. Качество поступающего на участок сырья - прокатной окалины с содержанием влаги 0,3-10%, проверяется в химической лаборатории.

Производится разделение окалины на 3 фракции на установке «McCloskej international 130». Исходное сырье подают в установку «McCloskej international 130» фронтальным погрузчиком. В результате сепарации выделяются следующие фракции: фракция +10 мм; фракция -10+3 мм; фракция -3 мм.

Фракции +10 мм и -10+3 мм не вовлекаются в технологический процесс, перемещаются фронтальным погрузчиком в лари и подлежат реализации потребителям. Для осуществления способа используют окалину фракции -3 мм, которая подлежит дальнейшей переработке на сепараторе для получения удовлетворительного качества подготовленных материалов, удаления мелких металлических включений в виде игольчатой стружки, которые не допустимы для ведения технологического процесса переработки окалины.

Участок подготовки шихты. На данном участке производится сухое смешивание исходного сырья и пластификация для получения гомогенной смеси окалины и бентонита и отстой шихты для достижения состояния набухания бентонита и повышения эластичности подготовленной шихты.

Сырье после сепарации поступает на участок подготовки шихты.

Окалина фракции -3 мм фронтальным погрузчиком подается в бункер №1, из которого через шнековый питатель на транспортер №1. Одновременно с окалиной подается бентонит из бункера №3 на транспортер №1 через шнековый питатель. При этом подают 93% окалины и 2% бентонита. Исходя из опытных данных при соблюдении данных пропорций достигается наилучшая эластичность и пластичность шихты исключающие наличие воздушных пористостей в ней, что обеспечивает равномерное и гомогенное заполнение камеры экструдера и в результате получение брикета высокой прочности.

Далее окалину и бентонит транспортером №2 направляют в смеситель для гомогенизации и стабилизации состава. В процессе смешивания в смеситель подают воду для увлажнения и пластификации шихты с обеспечением на выходе влажности шихты 10%.

Подготовленную гомогенизированную шихту из смесителя подают по транспортеру №2 на склад для отстоя шихты, где она выстаивается от 8 до 24 часов, что является оптимальным для обеспечения эластичности шихты.

Предварительное насыщение влагой гигроскопичных элементов шихты, а именно бентонита, и избавление их от лишнего увлажнения во время отстоя шихты способствует в дальнейшем качественному смешению шихты со связующим (цементом), что обеспечивает в дальнейшем высокие показатели физико-механических свойств брикетов.

Кроме того, указанная последовательность смешивания обеспечивает однородность химического состава изготовленных брикетов в каждой партии продукта.

Участок прессования. На участке прессования производят подачу полученной шихты с добавлением воды и связующего в виде цемента в экструзионный пресс для получения брикетов.

Подготовленную шихту со склада отстоя фронтальным погрузчиком загружают в приемный бункер линии прессования. Из приемного бункера через шнековый питатель шихта поступает на транспортер №3, посредством которого ее подают в двухвалковый смеситель.

Из силоса №3 на транспортер №3 одновременно с подготовленной шихтой в двухвалковый смеситель подают 5% цемента, что является достаточным для обеспечения требуемой прочности получаемого брикета. В процессе перемешивания в смеситель подают воду для пластификации готовой шихты и достижения влажности 12-15%.

После перемешивания в двухвалковом смесителе с цементом и водой шихту подают в дозатор экструдера, в котором ее предварительно уплотняют, и подают в вакуумную камеру экструдера. В вакуумной камере поддерживают низкий вакуум от 760 до 25 мм рт.ст., от 1×10+5 до 1×10+1 Па.

Для получения брикета используют экструзионный пресс с фиксированной передней частью оси главного экструзионного шнека. В отличие от прессов со свободно расположенной передней частью оси, используемый пресс позволяет обеспечить равномерную скорость потока и плотность исходной массы при подаче ее к каналам фильерной пластины по всей ее плоскости, с гарантированным получением брикетов однородного качества по прочностным характеристикам и удельной плотности.

После прохождения через экструдер с боковым давлением 5,2 МПа готовая продукция подается транспортером №4 на участок готового брикета (в ларь).

На участке готового брикета происходит набор прочности продукции не менее 5 МПа. После набора прочности (78 часов) готовые брикеты транспортируются фронтальным погрузчиком на склад готовой продукции для формирования транспортной партии и отгрузки потребителю.

Изобретение иллюстрируется следующими примерами.

Пример 1. Для получения брикета использовали прокатную окалину, бентонит (2%) и в качестве связующего цемент (5%) с добавлением воды. Химический состав (мас.%) компонентов и полученных брикетов указан в таблице 1.

После сепарации окалину фракции -3 мм смешивали с бентонитом в смесителе в соотношении на 1 т окалины подается 10 кг бентонита. В процессе смешивания подавали воду для получения на выходе влажности шихты 10%.

Подготовленную гомогенизированную шихту выстаивали на складе для отстоя шихты 12 часов. Подготовленную шихту со склада для отстоя и цемент одновременно направляют в двухвалковый смеситель. При перемешивании подают воду для пластификации шихты и достижения влажности 12%.

После перемешивания в двухвалковом смесителе шихту подают в дозатор экструдера для ее предварительного уплотнения и подают в вакуумную камеру экструдера. Давление в вакуумной камере составляет 50 мм рт.ст.

Затем шихту пропускали через экструдер с боковым давлением 5,2 МПа, после чего полученный брикет направляли на участок готового брикета для набора прочности не менее 5 МПа в течение 78 часов.

Пример 2. Для получения брикета, использовали прокатную окалины двух производств (54% +39%) фракции -3 мм, бентонит (2%) и в качестве связующего цемент (5%) с добавлением воды. Химический состав (мас.%) компонентов и полученных брикетов указан в таблице 2.

После сепарации окалину фракции -3 мм смешивали с бентонитом в смесителе в соотношении на 1 т окалины подается 10 кг бентонита. В процессе смешивания подавали воду для получения на выходе влажности шихты 10%.

Подготовленную гомогенизированную шихту выстаивали на складе для отстоя шихты 12 часов. Подготовленную шихту со склада для отстоя и цемент одновременно направляют в двухвалковый смеситель. При перемешивании подают воду для пластификации шихты и достижения влажности 12%.

После перемешивания в двухвалковом смесителе шихту подают в дозатор экструдера для ее предварительного уплотнения и подают в вакуумную камеру экструдера. Давление в вакуумной камере составляет 50 мм рт.ст.

Затем шихту пропускали через экструдер с боковым давлением 5,2 МПа, после чего полученный брикет направляли на участок готового брикета для набора прочности не менее 5 МПа в течение 78 часов.

Готовые брикеты соответствуют следующим физическим свойствам (табл. 3):

Таким образом, полученные экструзионные брикеты являются высококачественной железосодержащей продукцией, используемой в качестве промывочного материала в доменном производстве.

Похожие патенты RU2609888C1

название год авторы номер документа
Экструзионный брикет для доменного производства 2016
  • Шаруда Александр Николаевич
  • Павлов Сергей Владимирович
RU2609885C1
Экструзионный брикет для получения ванадийсодержащих шлаков при переработке ванадиевого чугуна 2016
  • Шаруда Александр Николаевич
  • Павлов Сергей Владимирович
RU2609883C1
Экструзионный брикет для сталеплавильного производства 2016
  • Шаруда Александр Николаевич
  • Павлов Сергей Владимирович
RU2609884C1
СПОСОБ ПОЛУЧЕНИЯ ЭКСТРУЗИОННОГО БРИКЕТА 2015
  • Шаруда Александр Николаевич
  • Кольцов Владислав Викторович
RU2584836C1
СОСТАВ ДЛЯ ИЗГОТОВЛЕНИЯ ФОРМОВАННЫХ ИЗДЕЛИЙ ИЗ ОТХОДОВ МЕТАЛЛУРГИЧЕСКИХ ПРОИЗВОДСТВ, СПОСОБ ПОЛУЧЕНИЯ СОСТАВА И СПОСОБ ИЗГОТОВЛЕНИЯ ФОРМОВАННЫХ ИЗДЕЛИЙ 2016
  • Шаруда, Александр Николаевич
  • Мясоедова, Вера Васильевна
RU2653746C1
КОМПАКТИРОВАННОЕ МЕТАЛЛУРГИЧЕСКОЕ ИЗДЕЛИЕ, СПОСОБ ПРОИЗВОДСТВА КОМПАКТИРОВАННОГО МЕТАЛЛУРГИЧЕСКОГО ИЗДЕЛИЯ И ПРИМЕНЕНИЕ КОМПАКТИРОВАННОГО МЕТАЛЛУРГИЧЕСКОГО ИЗДЕЛИЯ 2010
  • Шаруда Александр Николаевич
  • Кольцов Владислав Викторович
  • Казаков Сергей Васильевич
  • Павлов Сергей Владимирович
RU2476609C2
БРИКЕТ ЭКСТРУЗИОННЫЙ (БРЭКС) ШЛАМОВЫЙ 2012
  • Скороходов Владимир Николаевич
  • Курунов Иван Филиппович
  • Тихонов Дмитрий Николаевич
  • Стил Ричард Бинион
  • Бижанов Айтбер Махачевич
RU2506327C2
БРИКЕТ ЭКСТРУЗИОННЫЙ (БРЭКС) - КОМПОНЕНТ ДОМЕННОЙ ШИХТЫ 2012
  • Скороходов Владимир Николаевич
  • Курунов Иван Филиппович
  • Тихонов Дмитрий Николаевич
  • Бижанов Айтбер Махачевич
RU2506326C2
ФЛЮС ДЛЯ РАСКИСЛЕНИЯ, РАФИНИРОВАНИЯ, МОДИФИЦИРОВАНИЯ И ЛЕГИРОВАНИЯ СТАЛИ 2009
  • Шаруда Александр Николаевич
  • Павлов Сергей Владимирович
RU2396364C1
БРИКЕТ ДЛЯ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА, БРИКЕТ ДЛЯ ПРОМЫВКИ ГОРНА ДОМЕННОЙ ПЕЧИ И СПОСОБ ИЗГОТОВЛЕНИЯ БРИКЕТОВ 2001
  • Котенев В.И.
  • Оленников В.Г.
  • Барсукова Е.Ю.
  • Ястребов И.И.
RU2183679C1

Иллюстрации к изобретению RU 2 609 888 C1

Реферат патента 2017 года Экструзионный промывочный брикет для доменного производства

Изобретение относится к области черной металлургии, а именно к получению экструзионного брикета для промывки горнов доменных печей. Экструзионный брикет, полученный методом жесткой вакуумной экструзии, состоит из окалины металлургического производства, бентонита и цемента и содержит, мас.%: FeO>40; Fe2O3>25; MgO 0,01-2,8; MnO 0,01-1,5; С 0,01-1,5; SiO2 0,1-9,0; CaO 0,1-8,0, Al2O3 0,01-1,2, примеси <3, при этом содержание в брикете Feобщ.>60. Причем прочность на сжатие составляет не менее 5,0 МПа, удельная плотность - не менее 2,8 кг/дм3, открытая пористость - не менее 10%, а температура начала размягчения - не менее 1200°C. Брикет обладает высокими химическими и физико-механическими свойствами и обеспечивает проведение качественных промывочных плавок горна доменной печи с получением чугуна без ухудшения его качества. 1 з.п. ф-лы, 1 ил., 3 табл., 2 пр.

Формула изобретения RU 2 609 888 C1

1. Брикет для промывки доменной печи, полученный методом жесткой вакуумной экструзии, состоящий из 93% окалины металлургического производства, 2% бентонита и 5% цемента и содержащий, мас.%:

FeO >40 Fe2O3 >25 MgO 0,01-2,8 MnO 0,01-1,5 C 0,01-1,5 SiO2 0,1-9,0 CaO 0,1-8,0 Al2O3 0,01-1,2, примеси <3,

при этом содержание Feобщ.>60, прочность на сжатие составляет не менее 5,0 МПа, удельная плотность - не менее 2,8 кг/дм3, открытая пористость - не менее 10%, а температура начала размягчения - не менее 1200°С.

2. Брикет по п. 1, отличающийся тем, что в качестве окалины используется окалина отдельного или разных металлургических производств.

Документы, цитированные в отчете о поиске Патент 2017 года RU2609888C1

БРИКЕТ ЭКСТРУЗИОННЫЙ (БРЭКС) ПРОМЫВОЧНЫЙ 2012
  • Курунов Иван Филиппович
  • Тихонов Дмитрий Николаевич
  • Бижанов Айтбер Махачевич
RU2499061C1
Бижанов А.М
и др
Исследование механической прочности БРЭКСа
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
БРИКЕТ ДЛЯ ПРОМЫВКИ ГОРНА ДОМЕННОЙ ПЕЧИ 2005
  • Павлов Вячеслав Владимирович
  • Моисеев Олег Борисович
  • Годик Леонид Александрович
  • Козырев Николай Анатольевич
  • Солодков Станислав Тихонович
  • Томских Сергей Геннадьевич
  • Поляков Николай Серафимович
RU2294389C1
БРИКЕТ ДЛЯ ПРОМЫВКИ ДОМЕННОЙ ПЕЧИ (ВАРИАНТЫ) И СПОСОБ ЕГО ПРОИЗВОДСТВА 2009
  • Кобелев Владимир Андреевич
  • Чернавин Александр Юрьевич
  • Чернавин Даниил Александрович
  • Полянский Леонид Иванович
  • Кобелев Михаил Владимирович
  • Ветошкин Андрей Владиславович
  • Терентьев Александр Евгеньевич
  • Терентьев Евгений Александрович
RU2403295C1
US 5545297 A, 13.08.1996
ПОЛИМЕРЫ, ПО СУЩЕСТВУ СВОБОДНЫЕ ОТ ДЛИННОЦЕПОЧЕЧНОГО РАЗВЕТВЛЕНИЯ, ПЕРЕКРЕСТНЫЕ 2003
  • Милнер Скотт Т.
  • Шаффер Тимоти Д.
  • Чун Дейвид И.
RU2344145C2

RU 2 609 888 C1

Авторы

Шаруда Александр Николаевич

Павлов Сергей Владимирович

Даты

2017-02-06Публикация

2015-12-29Подача