СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV) И ЖЕЛЕЗА (III) В СОЛЯНОКИСЛЫХ РАСТВОРАХ Российский патент 2017 года по МПК C22B11/00 C22B3/24 

Описание патента на изобретение RU2610185C2

Изобретение относится к области аналитической химии платиновых металлов, в частности к методам разделения и концентрирования, и может быть использовано для разделения платины и железа в солянокислых растворах сорбционным методом с использованием селективного ионита комплексообразующего типа Purolite S985.

Из источников известны различные методы разделения платины и железа [Садырбаева Т.Ж., Пурин Б.А. Электродиализное разделение платины (II, IV) и железа (III) в системах с жидкими мембранами // Latvijas Kimijas Zurnals. 2001. №4. С. 418; RU 2204620, С22В 11/00, С22В 3/10, С22В 3/46, опубл. 20.05.2003].

В настоящее время известен способ разделения платины и железа в солянокислых растворах [Печенюк С.И. Изучение сорбции анионных комплексов платиновых металлов // Вестник Кольского научного центра РАН. 2013. №2. С. 64-74], который включает сорбцию хлоридных комплексов платины и других металлов платиновой группы оксигидроксидами в среде электролитов (NaCl, Na2SO4, NaClO4, 0,1-4,0 моль/л) при температуре от 3 до 80°C.

Недостатком данного способа является использование гидрогелей, свойства которых зависят от многих факторов. Гидрогели неравновесны, термодинамически неустойчивы. Платиновые металлы осаждаются на поверхности оксигидратов в виде полимерных гидроксидов. Специфически сорбируются очень малые количества ионов.

Известен способ отделения платины от железа в солянокислых растворах [Raju В., Kumar J.R., Lee J.Y. et al. Separation of platinum and rhodium from chloride solutions containing aluminum, magnesium and iron using solvent extraction and precipitation methods // Journal of Hazardous Materials. 2012. V. 227-228. P. 142-147], который включает отделение платины от железа методом осаждения при помощи фосфата натрия; экстракцию хлоридных комплексов платины из органической фазы с помощью смеси NH4Cl, HCl, NH3 - NH4Cl, NH4SCN и NaSCN (было выбран раствор 0,5 М HCl и 0,5 М тиомочевины для эффективной экстракции платины из органической фазы).

К недостаткам этого способа можно отнести использование экстракционного метода, являющегося вредным и требующим соблюдения особых правил техники безопасности.

Сорбционные методы экологически безопаснее и эффективнее, экстракционное извлечение платины составляет 99,97% за 2 цикла экстракции, в то время как сорбционное извлечение платины некоторыми сорбентами может достигать 100% за один цикл.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ разделения платины (II, IV) и железа (III) в хлоридных средах [Палант А.А., Левчук О.М., Брюквин К.А. Сорбционное извлечение платины из промышленных кислых растворов, содержащих повышенные количества железа // Цветные металлы. 2012. №5. С. 73-74], включающий сорбцию платины (II, IV) активированными углями и отделением ее от ряда сопутствующих металлов, в числе которых и железо (III). Исходный раствор (на основе царской водки) содержал, моль/л: 2,3⋅10-4 Pt (IV); 1,15 Fe (III), 5,17 Cl- и другие компоненты. Сорбцию проводили в статическом режиме в течение 0,5-5 ч при температуре 9-49°C.

Недостатками данного способа являются неполнота извлечения платины, сорбция платины при нагревании, в результате чего извлечение платины уменьшается, а также использование активированных углей, поскольку, несмотря на селективное извлечение и эффективное разделение, десорбция компонентов с этих сорбентов трудно осуществима. К тому же углеродные адсорбенты уступают ионитам по осмотической стабильности и механической прочности.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является отделение платины от железа, увеличение степени извлечения ионов металлов, уменьшение трудоемкости процесса разделения.

Указанный технический результат достигается тем, что в способе разделения платины (II, IV) и железа (III) в солянокислых растворах, включающем сорбцию платины (II, IV) и железа (III) и последующую десорбцию, новым является то, что сорбцию проводят из свежеприготовленных солянокислых растворов в диапазоне концентраций HCl 0,001-2,0 моль/л, железа (III) - 0,25-0,89 ммоль/л, при концентрации платины (II, IV) 0,25 ммоль/л в статических условиях путем насыщения навески ионита раствором в течение 6 ч, десорбцию железа проводят 0,01 М раствором HCl (pH=2) в течение 6 ч при температуре 50°C и концентрациях железа (III) 0,25-0,89 ммоль/л, десорбцию платины проводят раствором тиомочевины в течение 6 ч при температуре 18°C и исходной концентрации платины (II, IV) 0,25 ммоль/л.

Указанные отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательный уровень».

Изобретение поясняется чертежами. На фиг. 1 представлена общая схема разделения платины (II, IV) и железа (III) в хлоридных растворах на комплексообразующем анионите S985.

Сущность заявляемого способа заключается в том, что разделение платины и железа осуществляют в статических условиях. При этом в свежеприготовленных солянокислых растворах преимущественно присутствуют хлорокомплексы платины (II) и платины (IV) ([PtCl4]2- и [PtCl6]2-, железо в этих системах существует в виде комплексов [FeCl4]-.

На первом этапе навески ионита (0,1 г) в хлоридной форме заливают 10,0 мл солянокислого раствора платины (II, IV) и железа (III). Ионы платины (II, IV) и железа (III) переходят в фазу ионита. По истечении 6 ч определяют концентрацию платины (II, IV) и железа (III) при совместном присутствии в равновесных растворах спектрофотометрическим методом.

Второй этап включает десорбцию данных металлов с ионитов. Иониты после десорбции могут быть переведены снова в хлоридную форму и повторно использованы. Платину (II, IV) после разделения можно использовать для дальнейшей работы в виде раствора или можно перевести в металлическую форму путем электролиза.

После сорбционного извлечения платины и железа проводят десорбцию железа. Навески ионитов, насыщенные платиной и железом, массой 0,1 г заливают предварительно 0,01 М HCl (pH=2) и оставляют на 6 ч при температуре 50°C. Далее отделяют раствор от ионита фильтрованием и анализируют растворы на ионы железа (III) спектрофотометрическим методом с сульфосалициловой кислотой [Методы спектрофотометрии в УФ и видимой областях в неорганическом анализе / З. Марченко, М. Бальцежак. - М.: БИНОМ. Лаборатория знаний, 2007. - 711 с.].

Далее проводят десорбцию платины. Навески ионитов после десорбции железа (III) промывают 10,0 мл дистиллированной водой и заливают раствором тиомочевины (80 г/л в 0,3 М серной кислоте) объемом 10,0 мл и оставляют на 6 ч для установления равновесия. Платина (II, IV) переходит в раствор. Далее отделяют раствор от ионита фильтрованием. Растворы на содержание платины анализируют спектрофотометрическим методом с хлоридом олова (II) [Аналитическая химия платиновых металлов / С.И. Гинзбург, Н.А. Езерская, И.В. Прокофьева и др. - М.: Наука, 1972. - 617 с.].

Результаты по десорбции ионов железа (III) и платины (II, IV) представлены в таблицах 1 и 2 соответственно, где C0 - исходная концентрация элемента/среды при сорбции (ммоль/л/моль/л), T - температура (°C), t - время десорбции (ч).

Способ иллюстрируется следующими примерами.

Пример 1.

Навеску анионита Purolite S985 в хлоридной форме, массой 0,1 г заливают 10 мл свежеприготовленного солянокислого раствора следующего состава: концентрация HCl 2,0 моль/л, концентрация по платине (II, IV) 0,25 ммоль/л, по железу (III) 0,25 ммоль/л. Оставляют на 6 ч, при этом платина и железо полностью сорбируются на анионите. После этого отделяют раствор от анионита фильтрованием и промывают анионит водой. Затем заливают навеску анионита, насыщенную платиной и железом, раствором 0,01 М HCl (pH=2) и оставляют на 6 ч при температуре 50°C. Далее отделяют раствор от ионита фильтрованием. Анализируют растворы на ионы железа (III) спектрофотометрическим методом с сульфосалициловой кислотой. Железо (III) полностью десорбировалось (табл. 1). Далее анионит промывают водой и заливают раствором тиомочевины 80 г/л в 0,3 М серной кислоте объемом 10,0 мл и оставляют на 6 ч для установления равновесия. Платина (II, IV) переходит в раствор, после чего раствор отделяют от ионита фильтрованием (табл. 2). Растворы на содержание платины анализируют спектрофотометрическим методом с хлоридом олова (II).

Пример 2.

Навеску анионита Purolite S985 в хлоридной форме, массой 0,1 г заливают 10 мл свежеприготовленного солянокислого раствора следующего состава: концентрация HCl 2,0 моль/л, концентрация по платине (II, IV) 0,25 ммоль/л, по железу (III) 0,89 ммоль/л. Оставляют на 6 ч, при этом платина и железо полностью сорбируются на анионите. После этого отделяют раствор от анионита фильтрованием и промывают анионит водой. Затем заливают навеску анионита, насыщенную платиной и железом, раствором 0,01 М HCl (pH=2) и оставляют на 6 ч при температуре 50°C. Далее отделяют раствор от ионита фильтрованием. Анализируют растворы на ионы железа (III) спектрофотометрическим методом с сульфосалициловой кислотой. Железо (III) полностью десорбировалось (табл. 1). Далее анионит промывают водой и заливают раствором тиомочевины 80 г/л в 0,3 М серной кислоте объемом 10,0 мл и оставляют на 6 ч для установления равновесия. Платина (II, IV) переходит в раствор, после чего раствор отделяют от ионита фильтрованием (табл. 2). Растворы на содержание платины анализируют спектрофотометрическим методом с хлоридом олова (II).

Пример 3.

Навеску анионита Purolite S985 в хлоридной форме, массой 0,1 г заливают 10 мл свежеприготовленного солянокислого раствора следующего состава: концентрация HCl 0,001 моль/л, концентрация по платине (II, IV) 0,25 ммоль/л, по железу (III) 0,25 ммоль/л. Оставляют на 6 ч, при этом платина и железо полностью сорбируются на анионите. После этого отделяют раствор от анионита фильтрованием и промывают анионит водой. Затем заливают навеску анионита, насыщенную платиной и железом, раствором 0,01 М HCl (pH=2) и оставляют на 6 ч при температуре 50°C. Далее отделяют раствор от ионита фильтрованием. Анализируют растворы на ионы железа (III) спектрофотометрическим методом с сульфосалициловой кислотой. Железо (III) полностью десорбировалось (табл. 1). Далее анионит промывают водой и заливают раствором тиомочевины 80 г/л в 0,3 М серной кислоте объемом 10,0 мл и оставляют на 6 ч для установления равновесия. Платина (II, IV) переходит в раствор, после чего раствор отделяют от ионита фильтрованием (табл. 2). Растворы на содержание платины анализируют спектрофотометрическим методом с хлоридом олова (II).

Пример 4.

Навеску анионита Purolite S985 в хлоридной форме, массой 0,1 г заливают 10 мл свежеприготовленного солянокислого раствора следующего состава: концентрация HCl 0,001 моль/л, концентрация по платине (II, IV) 0,25 ммоль/л, по железу (III) 0,89 ммоль/л. Оставляют на 6 ч, при этом платина и железо полностью сорбируются на анионите. После этого отделяют раствор от анионита фильтрованием и промывают анионит водой. Затем заливают навеску анионита, насыщенную платиной и железом, раствором 0,01 М HCl (pH=2) и оставляют на 6 ч при температуре 50°C. Далее отделяют раствор от ионита фильтрованием. Анализируют растворы на ионы железа (III) спектрофотометрическим методом с сульфосалициловой кислотой. Железо (III) полностью десорбировалось (табл. 1). Далее анионит промывают водой и заливают раствором тиомочевины 80 г/л в 0,3 М серной кислоте объемом 10,0 мл и оставляют на 6 ч для установления равновесия. Платина (II, IV) переходит в раствор, после чего раствор отделяют от ионита фильтрованием (табл. 2). Растворы на содержание платины анализируют спектрофотометрическим методом с хлоридом олова (II).

Использование заявляемого изобретения позволяет разделить платину (II, IV) и железо (III) из хлоридных растворов в диапазоне концентраций по HCl от 0,001 до 2,0 М, по железу (III) от 0,25 до 0,89 ммоль/л. Для процессов сорбции и десорбции применяются растворы тиомочевины и хлороводородной кислоты, что позволяет легко регенерировать иониты. Способ позволяет извлекать указанные металлы из свежеприготовленных солянокислых растворов как в случае сорбции, так и в случае десорбции. Таким образом, появляется возможность отделения платины от железа, увеличивается степень извлечения ионов металлов, уменьшается трудоемкость процесса разделения.

Похожие патенты RU2610185C2

название год авторы номер документа
СПОСОБ ОТДЕЛЕНИЯ ПЛАТИНЫ (II, IV) И ПАЛЛАДИЯ (II) ОТ СЕРЕБРА (I), ЖЕЛЕЗА (III) И МЕДИ (II) В СОЛЯНОКИСЛЫХ РАСТВОРАХ 2019
  • Кононова Ольга Николаевна
  • Дуба Евгения Викторовна
RU2694855C1
СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV), МЕДИ (II) И ЦИНКА (II) В СОЛЯНОКИСЛЫХ РАСТВОРАХ 2016
  • Кононова Ольга Николаевна
  • Дуба Евгения Викторовна
  • Карплякова Наталья Сергеевна
RU2637547C1
СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV) И РОДИЯ (III) В СОЛЯНОКИСЛЫХ ВОДНЫХ РАСТВОРАХ 2010
  • Кононова Ольга Николаевна
  • Мельников Алексей Михайлович
  • Борисова Татьяна Владимировна
RU2439175C1
СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV), РОДИЯ (III) И НИКЕЛЯ (II) В ХЛОРИДНЫХ РАСТВОРАХ 2013
  • Кононова Ольга Николаевна
  • Мельников Алексей Михайлович
RU2527830C1
СПОСОБ ИЗВЛЕЧЕНИЯ ПЛАТИНЫ ИЗ СОЛЯНОКИСЛЫХ РАСТВОРОВ СЛОЖНОГО СОСТАВА 2006
  • Блохин Александр Андреевич
  • Абовский Николай Дмитриевич
  • Мурашкин Юрий Васильевич
RU2312910C2
Способ извлечения родия из многокомпонентных хлоридных растворов 2018
  • Егоров Сергей Александрович
  • Татарников Алексей Викторович
  • Блохин Александр Андреевич
  • Мурашкин Юрий Васильевич
RU2682907C1
Способ селективного извлечения ионов платины из хлоридных растворов 2019
  • Эрлих Генрих Владимирович
  • Буслаева Татьяна Максимовна
  • Мингалев Павел Германович
  • Марютина Татьяна Анатольевна
  • Тавберидзе Тимур Арсенович
  • Румянникова Галина Эндриховна
  • Илюхин Игорь Викторович
  • Барсегян Владимир Визскопбович
  • Котухов Сергей Борисович
  • Бруев Владимир Петрович
RU2703011C1
Способ извлечения платины, палладия и золота из технологических растворов 2021
  • Моходоева Ольга Борисовна
  • Катасонова Олеся Николаевна
  • Марютина Татьяна Анатольевна
  • Осипов Константин
  • Румянникова Галина Эндриховна
  • Тавберидзе Тимур Арсенович
RU2778081C1
СПОСОБ РАЗДЕЛЬНОГО ПОЛУЧЕНИЯ ЗОЛОТА И СЕРЕБРА ИЗ РАСТВОРОВ 2004
  • Даниленко Н.В.
  • Кононова О.Н.
  • Холмогоров А.Г.
  • Качин С.В.
RU2266342C1
СПОСОБ СЕЛЕКТИВНОГО ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ ВОДНЫХ ТИОЦИАНАТНЫХ РАСТВОРОВ 2008
  • Криницын Дмитрий Олегович
  • Кононова Ольга Николаевна
  • Качин Сергей Васильевич
RU2363746C1

Иллюстрации к изобретению RU 2 610 185 C2

Реферат патента 2017 года СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV) И ЖЕЛЕЗА (III) В СОЛЯНОКИСЛЫХ РАСТВОРАХ

Изобретение относится к области аналитической химии платиновых металлов, может быть использовано для разделения платины и железа в солянокислых растворах с использованием селективного ионита комплексообразующего типа Purolite S985. Способ включает сорбцию платины (II, IV) и железа (III) и последующую десорбцию этих ионов из растворов. Сорбцию проводят в статических условиях путем насыщения навески ионита раствором в течение 6 ч. При этом происходит переход платины (II, IV) и железа (III) в фазу ионита. Десорбцию железа проводят 0,01 М раствором HCl при pH=2 в течение 6 ч при температуре 50°C. Десорбцию платины проводят раствором тиомочевины в течение 6 ч при температуре 18°C. Железо и платина десорбируются на разных этапах эксперимента. Техническим результатом является отделение платины от железа, увеличение степени извлечения ионов металлов, уменьшение трудоемкости процесса разделения. 1 ил., 2 табл., 4 пр.

Формула изобретения RU 2 610 185 C2

Способ разделения платины (II, IV) и железа (III) в солянокислых растворах, включающий сорбцию платины (II, IV) и последующую десорбцию, отличающийся тем, что сорбцию платины (II, IV) осуществляют с одновременной сорбцией железа (III) и проводят ее из свежеприготовленных солянокислых растворов с использованием в качестве сорбента ионита Purolite S985 в хлоридной форме в диапазоне концентраций в растворе: HCl 0,001-2,0 моль/л, железа (III) - 0,25-0,89 ммоль/л, платины (II, IV) 0,25 ммоль/л, в статических условиях путем насыщения навески ионита раствором в течение 6 ч, далее проводят десорбцию железа 0,01 М раствором HCl при рН=2 в течение 6 ч при температуре 50°С и затем десорбцию платины раствором тиомочевины в течение 6 ч при температуре 18°С.

Документы, цитированные в отчете о поиске Патент 2017 года RU2610185C2

СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV), РОДИЯ (III) И НИКЕЛЯ (II) В ХЛОРИДНЫХ РАСТВОРАХ 2013
  • Кононова Ольга Николаевна
  • Мельников Алексей Михайлович
RU2527830C1
СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV) И РОДИЯ (III) В СОЛЯНОКИСЛЫХ ВОДНЫХ РАСТВОРАХ 2010
  • Кононова Ольга Николаевна
  • Мельников Алексей Михайлович
  • Борисова Татьяна Владимировна
RU2439175C1
Водяные часы 1929
  • Попов Д.И.
SU19142A1
СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТА БЛАГОРОДНЫХ МЕТАЛЛОВ 2004
  • Тертышный И.Г.
  • Чернышев В.И.
  • Шустов С.В.
RU2258090C1
СПОСОБ ПРОИЗВОДСТВА АРОМАТИЗИРОВАННОГО ВАФЕЛЬНОГО ХЛЕБА 2010
  • Квасенков Олег Иванович
RU2418441C1
JP 62030827 A, 09.02.1987
US 4834850 A, 30.05.1989.

RU 2 610 185 C2

Авторы

Кононова Ольга Николаевна

Дуба Евгения Викторовна

Даты

2017-02-08Публикация

2015-07-16Подача