СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV), РОДИЯ (III) И НИКЕЛЯ (II) В ХЛОРИДНЫХ РАСТВОРАХ Российский патент 2014 года по МПК C22B11/00 C22B23/00 C22B3/24 

Описание патента на изобретение RU2527830C1

Изобретение относится к области аналитической химии платиновых металлов, в частности к методам разделения и концентрирования, и может быть использовано для разделения платины, родия и никеля в хлоридных свежеприготовленных и выдержанных растворах сорбционным методом с использованием сильноосновного и слабоосновного комплексообразующего анионитов.

В настоящее время известен способ разделения платины и родия в солянокислых растворах [патент РФ №2165992, С22В 11/00, С22В 3/24, опубл. 27.04.2001 г.], включающий сорбцию их из растворов на сильноосновном анионите, последующую промывку анионита и его сжигание с получением металлической платины и чистых соединений родия.

К недостаткам этого способа относится использование только свежеприготовленных растворов; невозможность повторного использования анионита вследствие сжигания; проведение осаждения; а также экологическая опасность способа ввиду высокой температуры термической деструкции (400°С) и сжигания анионита (950°С).

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ разделения платины (II, IV) и родия (III) в солянокислых водных растворах [патент РФ №2439175, С22В 11/00, С22В 3/24, опубл. 10.01.2012], включающий сорбцию платины (II, IV) и родия (III) сильноосновным анионитом Purolite A 500, содержащим в качестве функциональной группы четвертичное аммонийное основание, и последующую десорбцию с анионита. При этом сорбцию осуществляют из свежеприготовленных и выдержанных растворов. Для десорбции платины используют 2 М NH4SCN или 2 М KNO3, для элюирования родия - 2 М HCl или 1 М раствор тиомочевины в 2 М растворе H2SO4.

К недостаткам данного способа относятся неполнота извлечения платиновых металлов и длительность процесса разделения за счет проведение экспериментов в статических условиях, отсутствие возможности отделения платины и родия от сопутствующих ионов цветных металлов, в частности, никеля.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является сокращение времени разделения платиновых металлов в растворах, отделение их от сопутствующих металлов, в частности никеля, увеличение степени извлечения металлов, уменьшение трудоемкости процесса разделения.

Достижение технического результата обеспечивается тем, что в способе отделения платины (II, IV), родия (III) и никеля (II) в хлоридных растворах, включающем сорбцию платины (II, IV) и родия (III) и последующую десорбцию, при этом сорбцию проводят из свежеприготовленных или выдержанных растворов в динамических условиях путем пропускания раствора через слой сильноосновного анионита Purolite A 500 или слабоосновного комплексообразующего анионита Purolite S 985, содержащего полиаминные функциональные группы, при полном переходе платины (II, IV) и родия (III) в анионит и оставлении никеля (II) в выходящем растворе.

Указанные отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательный уровень».

Изобретение поясняется чертежами. На фиг.1 представлена общая схема разделения платины (II, IV), родия (III) и никеля (II) в хлоридных растворах на сильноосновном анионите Purolite A 500 и слабоосновном комплексообразующем анионите Purolite S 985. На фиг.2 представлены результаты исследования морфологии поверхности анионита Purolite S 985 после сорбции металлов, полученные сканирующей электронной рентгеновской микроскопией.

Сущность способа заключается в том, что разделение платиновых металлов и никеля осуществляют в динамических условиях, позволяющих, в отличие от статических, снизить время проведения сорбции. Кроме того, пропускание раствора через хроматографическую колонку дает возможность разделения ионов, содержащихся в этом растворе. При этом в свежеприготовленных хлоридных растворах преимущественно присутствуют хлорокомплексы платины (II) и платины (IV) ([PtCl4]2- и [PtCl6]2-) и гексахлорокомплексы родия (III) ([RhCl6]3-), никель в этих системах существует в виде комплексов [NiCl4]2-. По мере выдерживания в растворах образуются аква- и гидроксокомплексы платиновых металлов: [Pt(OH)Cl3]2-, [RhCl5(OH)5]3-, [Pt(OH)6]2- и [Rh(H2O)3Cl3]0 и другие. В случае никеля - «старения» растворов не происходит. Выдержанные системы наиболее приближены к технологическим.

На первом этапе пропускают свежеприготовленный или выдержанный в течение трех месяцев раствор через слой предварительно набухшего сильноосновного анионита Purolite A 500 или слабоосновного комплексообразующего анионита Purolite S 985, для которого характерно увеличение извлечения комплексов металлов в слабокислых средах за счет дополнительного комплексообразования. В результате пропускания таких растворов платина (II, IV) и родий (III) полностью сорбируются, а никель (II) остается в выходящем растворе без изменения концентрации. Отсутствие ионов никеля (II) в фазе анионита Purolite S 985 после сорбции подтверждают результаты исследования морфологии его поверхности, полученные сканирующей электронной рентгеновской микроскопией. Аналогичные данные получают при исследовании фазы анионита Purolite A 500.

Второй этап включает десорбцию платиновых металлов с анионитов. При выдерживании растворов в течение трех месяцев объемы десорбентов, требуемые для полного извлечения платиновых металлов с анионитов несколько увеличиваются, однако это не оказывает значительного влияния на эффективность извлечения. Аниониты после десорбции переходят в хлоридную форму, пригодную для повторного использования без дополнительной регенерации. Платину (II, IV), родий (III) и никель (II) после разделения можно использовать для дальнейшей работы в виде растворов, либо можно перевести их в металлическую форму.

Заявляемый способ осуществляется следующим образом.

Анионит Purolite A 500 или Purolite S 985 в хлоридной форме, массой 2,3 г или 1,8 г, соответственно, помещают в хроматографическую колонку, высотой 20 см и диаметром 1 см. Для набухания аниониты на 20 мин заливают небольшим количеством (-20 мл) 0,01 М раствора HCl. Далее через слой анионитов со скоростью 1,5 мл/мин пропускают 50 мл раствора следующего состава: концентрации HCl 0,01-2 моль/л, концентрация по платине (II, IV) 2,5·10-4 моль/л, по родию (III) 2,5·10-4 моль/л, по никелю (II) 8,5·10-4 моль/л. В результате полностью сорбируются комплексы платины (II, IV) и родия (III), а ионы никеля (II) остаются в выходящем растворе. После этого пропускают 2 М раствор NH4SCN. При этом платина (II, IV) полностью переходит в раствор. Далее аниониты промывают от избытка тиоцианата аммония 20 мл воды и пропускают через них 2 М раствор HCl для извлечения родия (III). При этом аниониты переходят в хлоридную форму, пригодную для повторного использования без дополнительной регенерации.

Концентрации комплексов металлов в растворах определяют спектрофотометрическим методом с хлоридом олова (II) для платины (II, IV) и родия (III), и диметилглиоксимом для никеля (II) по известным методикам [Аналитическая химия платиновых металлов / С.И. Гинзбург, Н.А. Езерская, И.В. Прокофьева и др. М.: Наука, 1972. 617 с.; Пешкова В.М., Савостина В.М. Аналитическая химия никеля. М.: Наука, 1966. 205 с.].

Результаты предлагаемого способа представлены в табл.1 и 2, где С - концентрации платины (II, IV), родия (III), никеля (II) и хлороводородной кислоты в контактирующих растворах (моль/л), Rсорб, - процент сорбции платиновых металлов (%), Vдес - объем десорбента, требуемый для полного извлечения сорбированных ионов платиновых металлов (мл); Сэл - концентрация платины (II, IV) или родия (III) в элюате после их полной десорбции (моль/л).

Способ иллюстрируется следующими примерами.

Пример 1. Анионит Purolite A 500 в хлоридной форме, массой 2,3 г, помещают в хроматографическую колонку, заливают на 20 мин 20 мл 0,01 М раствора HCl для его набухания, затем со скоростью 1,5 мл/мин пропускают 50 мл свежеприготовленного раствора следующего состава: концентрация HCl 2,0 моль/л, концентрация по платине (II, IV) 2,5·10-4 моль/л, по родию (III) 2,5·10-4 моль/л, по никелю (II) 8,5·10-4 моль/л (табл.1). При этом никель (II) остается в выходящем растворе, в то время как платиновые металлы полностью сорбируются. Далее через слой анионита пропускают 120 мл 2 М раствора NH4SCN для извлечения платины (II, IV). Затем анионит промывают 20 мл воды и пропускают через него 140 мл 2 М раствора HCl для извлечения родия (III).

Пример 2. Анионит Purolite A 500 в хлоридной форме, массой 2,3 г, помещают в хроматографическую колонку, заливают на 20 мин 20 мл 0,01 М раствора HCl для его набухания, затем со скоростью 1,5 мл/мин пропускают 50 мл свежеприготовленного раствора следующего состава: концентрация HCl 0,01 моль/л, концентрация по платине (II, IV) 2,5·10-4 моль/л), по родию (III) 2,5·10-4 моль/л, по никелю (II) 8,5·10-4 моль/л (табл.1). При этом никель (II) остается в выходящем растворе, в то время как платиновые металлы полностью сорбируются. Далее через слой анионита пропускают 140 мл 2 М раствора NH4SCN для извлечения платины (II, IV). Затем анионит промывают 20 мл воды и пропускают через него 150 мл 2 М раствора HCl для извлечения родия (III).

Пример 3. Анионит Purolite A 500 в хлоридной форме, массой 2,3 г, помещают в хроматографическую колонку, заливают на 20 мин 20 мл 0,01 М раствора HCl для его набухания, затем со скоростью 1,5 мл/мин пропускают 50 мл выдержанного в течение трех месяцев раствора следующего состава: концентрации HCl 0,01 моль/л, концентрация по платине (II, IV) 2,5·10-4 моль/л, по родию (III) 2,5·10-4 моль/л, по никелю (II) 8,5·10-4 моль/л. При этом никель (II) остается в выходящем растворе, в то время как платиновые металлы полностью сорбируются на анионите. Далее через слой анионита пропускают 190 мл 2 М раствора NH4SCN для извлечения платины (II, IV). Затем анионит промывают 20 мл воды и пропускают через него 185 мл 2 М раствора HCl для извлечения родия (III).

Пример 4. Анионит Purolite S 985 в хлоридной форме, массой 1,8 г, помещают в хроматографическую колонку, заливают на 20 мин 20 мл 0,01 М раствора HCl для его набухания, затем со скоростью 1,5 мл/мин пропускают 50 мл свежеприготовленного раствора следующего состава: концентрация HCl 2,0 моль/л, концентрация по платине (II, IV) 2,5·10-4 моль/л, по родию (III) 2,5·10-4 моль/л, по никелю (11) 8,5·10-4 моль/л (табл.1). При этом никель (II) остается в выходящем растворе, в то время как платиновые металлы полностью сорбируются. Далее через слой анионита пропускают 150 мл 2 М раствора NH4SCN для извлечения платины (II, IV). Затем анионит промывают 20 мл воды и пропускают через него 160 мл 2 М раствора HCl для извлечения родия (III).

Пример 5. Анионит Purolite S 985 в хлоридной форме, массой 1,8 г, помещают в хроматографическую колонку, заливают на 20 мин 20 мл 0,01 М раствора НС1 для его набухания, затем со скоростью 1,5 мл/мин пропускают 50 мл свежеприготовленного раствора следующего состава: концентрация HCl 0,01 моль/л, концентрация по платине (II, IV) 2,5·10-4 моль/л, по родию (III) 2,5·10-4 моль/л, по никелю (II) 8,5·10-4 моль/л (табл.1). При этом никель (II) остается в выходящем растворе, в то время как платиновые металлы полностью сорбируются. Далее через слой анионита пропускают 160 мл 2 М раствора NH4SCN для извлечения платины (II, IV). Затем анионит промывают 20 мл воды и пропускают через него 170 мл 2 М раствора HCl для извлечения родия (III).

Пример 6. Анионит Purolite S 985 в хлоридной форме, массой 1,8 г, помещают в хроматографическую колонку, заливают на 20 мин 20 мл 0,01 М раствора HCl для его набухания, затем со скоростью 1,5 мл/мин пропускают 50 мл выдержанного в течение трех месяцев раствора следующего состава: концентрации HCl 0,01 моль/л, концентрация по платине (II, IV) 2,5·10-4 моль/л, по родию (III) 2,5·10-4 моль/л, по никелю (II) 8,5·10-4 моль/л. При этом никель (II) остается в выходящем растворе, в то время как платиновые металлы полностью сорбируются. Далее через слой анионита пропускают 210 мл 2 М раствора NH4SCN для извлечения платины (II, IV). Затем анионит промывают 20 мл воды и пропускают через него 210 мл 2 М раствора HCl для извлечения родия (III).

Результаты разделения платины (II, IV) и родия (III) представлены в табл.1, результаты по сорбции никеля (II) в табл.2.

Таблица 1 Результаты по разделению платины (II, IV) и родия (III) из свежеприготовленных (а) и выдержанных (б) растворов в динамических условиях (C(Pt)=C(Rh)=2,5·10-4 моль/л) Марка анионита Металлы C (HCl), моль/л Rсорб, % Десорбент 2М NH4SCN 2М HCl Vдес, мл Сэл, моль/л Vдес, мл Сэл, моль/л Purolite А 500 Pt (a) 2,0 99,9 120 1,04·10-4 - - (a) 0,01 99,9 140 8,92·10-5 - - (6)0,01 95,0 190 6,25·10-5 - - Rh (a) 2,0 99,9 - - 140 8,93·10-4 (a) 0,01 99,9 - - 150 8,34·10-4 (6) 0,01 93,2 - - 185 6,25·10-4 Purolite S985 Pt (a) 2,0 99,9 150 8,33·10-5 - - (a) 0,01 99,9 160 7,80·10-5 - - (6) 0,01 98,0 210 5,83·10-5 - - Rh (a) 2,0 99,9 - - 160 7,81·10-4 (a) 0,01 99,9 - - 170 7,36·10-4 (6) 0,01 97,1 - - 210 5,77·10-4 Таблица 2 Результаты по сорбции никеля (II) из свежеприготовленных (а) и выдержанных (б) растворов в динамических условиях Марка анионита C (Ni) С (HCl) в свежеприготовленных растворах С (HCl) в выдержанных растворах 2,0 моль/л 0,01 моль/л 0,01 моль/л Purolite А 500 До сорбции 8,5·10-4 8,5·10-4 8,5·10-4 После сорбции 8,5·10-4 8,5·10-4 8,5·10-4 Purolite S985 До сорбции 8,5·10-4 8,5·10-4 8,5·10-4 После сорбции 8,5·10-4 8,5·10-4 8,5·10-4

Использование заявляемого изобретения открывает возможность раздельного получения платины (II, IV), родия (III) и никеля (II) из хлоридных растворов. Для процессов сорбции и десорбции применяются дешевые, нетоксичные растворы тиоцианата аммония и хлороводородной кислоты, что позволяет разработать экологически безопасные технологии извлечения платиновых металлов и никеля, и избежать дополнительной операции регенерации анионита.

Способ позволяет извлекать указанные металлы на уровне до 99,9% не только из свежеприготовленных, но и из выдержанных растворов, поскольку последние приближены к производственным условиям, где часто используют «старые» растворы. Кроме того, использование комплексообразующего анионита Purolite S 985 позволяет увеличить степень извлечения металлов при переходе от сильнокислых к слабокислым средам.

Таким образом, в результате использования заявляемого технического решения сокращается время разделения платиновых металлов в растворах за счет проведения сорбции в динамических условиях, появляется, возможность отделения их от сопутствующих металлов, в частности никеля, а также увеличивается степень извлечения металлов, уменьшается трудоемкость процесса разделения.

Похожие патенты RU2527830C1

название год авторы номер документа
СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV) И РОДИЯ (III) В СОЛЯНОКИСЛЫХ ВОДНЫХ РАСТВОРАХ 2010
  • Кононова Ольга Николаевна
  • Мельников Алексей Михайлович
  • Борисова Татьяна Владимировна
RU2439175C1
СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV) И ЖЕЛЕЗА (III) В СОЛЯНОКИСЛЫХ РАСТВОРАХ 2015
  • Кононова Ольга Николаевна
  • Дуба Евгения Викторовна
RU2610185C2
СПОСОБ ОТДЕЛЕНИЯ ПЛАТИНЫ (II, IV) И ПАЛЛАДИЯ (II) ОТ СЕРЕБРА (I), ЖЕЛЕЗА (III) И МЕДИ (II) В СОЛЯНОКИСЛЫХ РАСТВОРАХ 2019
  • Кононова Ольга Николаевна
  • Дуба Евгения Викторовна
RU2694855C1
СПОСОБ ИЗВЛЕЧЕНИЯ И РАЗДЕЛЕНИЯ ПЛАТИНЫ И РОДИЯ В СУЛЬФАТНЫХ РАСТВОРАХ 2012
  • Кононова Ольга Николаевна
  • Мельников Алексей Михайлович
RU2479651C1
СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV), МЕДИ (II) И ЦИНКА (II) В СОЛЯНОКИСЛЫХ РАСТВОРАХ 2016
  • Кононова Ольга Николаевна
  • Дуба Евгения Викторовна
  • Карплякова Наталья Сергеевна
RU2637547C1
Способ селективного извлечения ионов платины из хлоридных растворов 2019
  • Эрлих Генрих Владимирович
  • Буслаева Татьяна Максимовна
  • Мингалев Павел Германович
  • Марютина Татьяна Анатольевна
  • Тавберидзе Тимур Арсенович
  • Румянникова Галина Эндриховна
  • Илюхин Игорь Викторович
  • Барсегян Владимир Визскопбович
  • Котухов Сергей Борисович
  • Бруев Владимир Петрович
RU2703011C1
Способ извлечения родия из многокомпонентных хлоридных растворов 2018
  • Егоров Сергей Александрович
  • Татарников Алексей Викторович
  • Блохин Александр Андреевич
  • Мурашкин Юрий Васильевич
RU2682907C1
Способ извлечения платины, палладия и золота из технологических растворов 2021
  • Моходоева Ольга Борисовна
  • Катасонова Олеся Николаевна
  • Марютина Татьяна Анатольевна
  • Осипов Константин
  • Румянникова Галина Эндриховна
  • Тавберидзе Тимур Арсенович
RU2778081C1
СПОСОБ ИЗВЛЕЧЕНИЯ ПЛАТИНЫ ИЗ СОЛЯНОКИСЛЫХ РАСТВОРОВ СЛОЖНОГО СОСТАВА 2006
  • Блохин Александр Андреевич
  • Абовский Николай Дмитриевич
  • Мурашкин Юрий Васильевич
RU2312910C2
Способ селективного выделения родия Rh, рутения Ru и иридия Ir из солянокислых растворов хлорокомплексов платины Pt(IV), палладия Pd(II), золота Au(III), серебра Ag(I), родия Rh(III), рутения Ru(IV) и иридия Ir(IV) 2020
  • Федосеев Игорь Владимирович
  • Васекин Василий Васильевич
  • Марамыгина Мария Вячеславовна
  • Ровинская Наталья Валентиновна
RU2742994C1

Иллюстрации к изобретению RU 2 527 830 C1

Реферат патента 2014 года СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV), РОДИЯ (III) И НИКЕЛЯ (II) В ХЛОРИДНЫХ РАСТВОРАХ

Изобретение относится к разделению и концентрированию металлов и может быть использовано для разделения платины, родия и никеля. Способ отделения платины (II, IV) и родия (III) от никеля (II) в хлоридных растворах, включает сорбцию платины (II, IV) и родия (III) и последующую десорбцию этих металлов. Сорбцию проводят из свежеприготовленных или выдержанных растворов в динамических условиях путем пропускания раствора через слой сильноосновного анионита Purolite А 500 или слабоосновного комплексообразующего анионита Purolite S 985, содержащего полиаминные функциональные группы. При этом происходит полный переход платины (II, IV) и родия (III) в анионит и оставление никеля (II) в выходящем растворе. Техническим результатом является сокращение времени процесса, отделение платиновых металлов от сопутствующих металлов, в частности от никеля, увеличение степени извлечения металлов, уменьшение трудоемкости процесса разделения. 2 ил., 2 табл., 6 пр.

Формула изобретения RU 2 527 830 C1

Способ отделения платины (II, IV) и родия (III) от никеля (II) в хлоридных растворах, включающий сорбцию платины (II, IV) и родия (III) и последующую десорбцию, при этом сорбцию проводят из свежеприготовленных или выдержанных растворов в динамических условиях путем пропускания раствора через слой сильноосновного анионита Purolite А 500 или слабоосновного комплексообразующего анионита Purolite S 985, содержащего полиаминные функциональные группы, при полном переходе платины (II, IV) и родия (III) в анионит и оставлении никеля (II) в выходящем растворе.

Документы, цитированные в отчете о поиске Патент 2014 года RU2527830C1

СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV) И РОДИЯ (III) В СОЛЯНОКИСЛЫХ ВОДНЫХ РАСТВОРАХ 2010
  • Кононова Ольга Николаевна
  • Мельников Алексей Михайлович
  • Борисова Татьяна Владимировна
RU2439175C1
СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ И РОДИЯ В СОЛЯНОКИСЛЫХ РАСТВОРАХ 1999
  • Тимофеев Н.И.
  • Смирнов А.Л.
  • Зонов А.Л.
  • Оносов В.Н.
  • Богданов В.И.
  • Ермаков А.В.
  • Горбатова Л.Д.
  • Гроховский С.В.
RU2165992C1
СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТА БЛАГОРОДНЫХ МЕТАЛЛОВ 2004
  • Тертышный И.Г.
  • Чернышев В.И.
  • Шустов С.В.
RU2258090C1
СПОСОБ ВЫДЕЛЕНИЯ ПЛАТИНОВЫХ МЕТАЛЛОВ 1997
  • Скороходов В.И.
  • Кремко Е.Г.
  • Волкова Н.А.
  • Мастюгин С.А.
  • Лебедь А.Б.
  • Горяева О.Ю.
  • Рычков Д.М.
RU2111272C1
СПОСОБ ПРОИЗВОДСТВА АРОМАТИЗИРОВАННОГО ВАФЕЛЬНОГО ХЛЕБА 2010
  • Квасенков Олег Иванович
RU2418441C1
JP 62030827 A, 09.02.1987
US 4834850 A, 30.05.1989

RU 2 527 830 C1

Авторы

Кононова Ольга Николаевна

Мельников Алексей Михайлович

Даты

2014-09-10Публикация

2013-03-15Подача