Изобретение относится к измерительной технике и, в частности, к измерению поверхностных токов на цилиндрических и других сложных по форме поверхностях из немагнитных проводящих материалов.
Известен измеритель тока, содержащий датчик тока в виде резистивного шунта, включенного последовательно с цепью, по которой протекает измеряемый ток, и измерительную схему, подключенную к резистивному шунту (Интегральный измеритель тока (микросхема) МАХ471 компании Maxim-Dallas. Журнал «Электронные компоненты», №9, 2005 г., стр. 59-63).
Недостатком данного измерителя является гальваническая связь датчика тока и измерительной схемы с цепью, по которой протекает измеряемый ток, а также относительно большая мощность, рассеиваемая на резистивном шунте.
Частично указанные недостатки отсутствуют в измерителе тока ACS713 компании Allegro. Интегральная схема ACS713 имеет встроенный проводник, подключенный к внешним выводам микросхемы и расположенный рядом с элементом Холла. Элемент Холла подключен к входу предусилителя, коэффициент передачи которого определяет диапазон измеряемых токов, подводимых к элементу Холла через встроенный проводник (Микросхема ACS713 Allegro, Allegro MicroSystems, Inc. U.S.A. www.allegromicro.com). Описание подобного измерителя приводится также в патенте РФ №2465609, G01R 15/2, 2011 г. В данных измерителях предусилитель гальванически не связан с встроенным в микросхему проводником, однако подведение измеряемого тока через контакты микросхемы к встроенному проводнику ограничивает области ее применения.
Указанные недостатки отсутствуют в выбранном в качестве прототипа датчике тока с выходом по напряжению, содержащем сенсорный модуль с элементом Холла, два миниатюрных концентратора, направляющих магнитное поле, создаваемое измеряемым током, на чувствительную зону элемента Холла, и предусилитель, подключенный к выходу элемента Холла, (90 кГц IMC-Hall® Current Sensor, CSA-1VG, www.melexis.com). Выходное напряжение этого датчика прямо пропорционально измеряемому току. Нулевое значение тока соответствует половинной величине напряжения питания. При измерении датчик устанавливается над контролируемым проводником с током без электрического контакта с ним. При протекании измеряемого постоянного тока по проводнику вокруг него создается постоянное магнитное поле, которое воздействует на чувствительную зону элемента Холла. На выходе усилителя вырабатывается приращение сигнала ΔU, прямо пропорциональное величине магнитного поля, а следовательно, и измеряемому току в проводнике. При отсутствии тока в проводнике на элемент Холла не воздействует магнитное поле, и усилитель вырабатывает исходное напряжение смещения, равное половине напряжения питания Uo=E/2. В зависимости от направления, в котором протекает измеряемый ток, оно складывается или вычитается с постоянным смещением Uo, которое индицируется вольтметром. Микросхема CSA-1V размещена в корпусе SO-8, имеющем размеры 4×5 мм.
Недостатком данного устройства является низкий уровень полезного сигнала и небольшая контролируемая площадь, по которой протекает измеряемый ток.
Ожидаемый технический эффект предлагаемого изобретения заключается в повышении уровня полезного сигнала, снимаемого с элемента Холла, и увеличении площади фрагмента с поверхностным током, контролируемым измерителем.
Поставленная задача решается тем, что в измерителе поверхностного тока, содержащем сенсорный модуль с элементом Холла, усилитель, вход которого подключен к выходу элемента Холла, а выход - к индикатору, два концентратора магнитного поля, заостренные части которых расположены рядом с чувствительной зоной элемента Холла и направлены на нее и навстречу друг другу, концентраторы магнитного поля выполнены из листового гибкого материала, обеспечивающего плотное прилегание их к поверхности фрагмента с поверхностным током сложной формы, причем геометрические размеры концентраторов магнитного поля соизмеримы с геометрическими размерами контролируемого фрагмента с поверхностным током и значительно превышают геометрические размеры элемента Холла.
Функциональная схема предлагаемого бесконтактного измерителя поверхностных токов приведена на чертеже, на котором показан пример выполнения сенсорного модуля 1 измерителя поверхностных токов с элементом Холла и расположения его на контролируемом фрагменте 6 объекта цилиндрической формы (трубы).
Измеритель поверхностного тока содержит сенсорный модуль 1, который включает в себя элемент Холла 2 и два концентратора магнитного поля 3.1 и 3.2, установленные так, что заостренные части концентраторов магнитного поля 3.1, 3.2 расположены рядом с чувствительной зоной элемента Холла 2 и направлены на нее и навстречу друг другу. Выход элемента Холла 2 подключен к входу усилителя 4, выход которого подключен к индикатору 5. Геометрические размеры концентраторов магнитного поля 3.1 и 3.2 соизмеримы с геометрическими размерами контролируемого фрагмента с поверхностным током 6 и значительно превышают геометрические размеры элемента Холла 2. При этом концентраторы магнитного поля 3.1 и 3.2 выполнены из гибкого листового ферромагнитного материала (например, листового пермаллоя или ферромагнитной резины).
Контролируемыми объектами могут быть трубопроводы, выполненные из проводящих немагнитных материалов, таких как латунь, бронза, нержавеющая сталь и т.д.
При отсутствии поверхностного тока на контролируемом фрагменте 6 на элемент Холла 2 не воздействует магнитное поле, поэтому на выходе усилителя 4 вырабатывается исходный уровень напряжения смещения, равный половине напряжения питания U4=E/2. Это напряжение регистрируется индикатором 5.
При протекании поверхностного тока J=j⋅Δs, по контролируемому фрагменту 6 (где Δs - поперечное сечение контролируемого фрагмента 6, j - плотность тока) вокруг него создается магнитное поле Н, силовые линии которого концентрируются острыми выступами концентраторов магнитного поля 3.1, 3.2 на чувствительной зоне элемента Холла 2, который генерирует на своем выходе холловское напряжение U2, прямо пропорциональное величине магнитного поля Н, а следовательно, и измеряемому поверхностному току J. После усиления усилителем 4 оно регистрируется индикатором 5.
Площадь измерения предлагаемого устройства определяется площадью ΔSкмп, охватываемой концентраторами магнитного поля 3.1, 3.2, и, как видно из схемы устройства (фиг. 1), по сравнению с прототипом увеличивается не менее чем в ΔSкмп/ΔSэх раз, где ΔSэх - площадь датчика с элементом Холла.
Элементы 3.1 и 3.2 концентратора магнитного поля 3 могут быть выполнены из листового гибкого пермаллоя, трансформаторного железа, ферромагнитной резины или другого подходящего гибкого магнитомягкого ферромагнетика с большой магнитной проницаемостью μ.
название | год | авторы | номер документа |
---|---|---|---|
БЕСКОНТАКТНЫЙ ДАТЧИК ПОЛОЖЕНИЯ ДРОССЕЛЬНОЙ ЗАСЛОНКИ | 2005 |
|
RU2298148C2 |
ИНДУКТОР ВИХРЕВЫХ ТОКОВ ДЛЯ МАГНИТОГРАФИЧЕСКОЙ ДЕФЕКТОСКОПИИ И СКАНЕР НА ЕГО ОСНОВЕ | 2009 |
|
RU2464555C1 |
БЕСКОНТАКТНЫЙ ИЗМЕРИТЕЛЬ ТОКА | 2011 |
|
RU2465609C1 |
ДАТЧИК ТОКА | 2010 |
|
RU2445638C1 |
ИНТЕГРАЛЬНЫЙ ГРАДИЕНТНЫЙ МАГНИТОТРАНЗИСТОРНЫЙ ДАТЧИК | 2010 |
|
RU2453947C2 |
ЭЛЕКТРОМАГНИТНЫЙ ДЕФЕКТОСКОП ДЛЯ ОБНАРУЖЕНИЯ КОРРОЗИОННЫХ ПОВРЕЖДЕНИЙ СТЕНОК ФЕРРОМАГНИТНЫХ КОНСТРУКЦИЙ | 2008 |
|
RU2397485C2 |
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ТОКОРАСПРЕДЕЛЕНИЯ ЩЕТОЧНО-КОНТАКТНОГО АППАРАТА ЭЛЕКТРИЧЕСКОЙ МАШИНЫ | 1999 |
|
RU2157033C1 |
СПОСОБ ИЗМЕРЕНИЯ СИЛЫ ТОКА В ПРОВОДНИКЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2010 |
|
RU2453853C2 |
Способ толщинометрии крупногабаритных листовых и рулонных изделий и устройство для его осуществления | 1981 |
|
SU1030718A1 |
ОПТОЭЛЕКТРОННЫЙ ИЗМЕРИТЕЛЬ ПОСТОЯННЫХ МАГНИТНЫХ ПОЛЕЙ И ТОКОВ | 1993 |
|
RU2035048C1 |
Изобретение относится к измерительной технике, в частности к измерению поверхностных токов на цилиндрических и других сложных по форме поверхностях из немагнитных проводящих материалов. Технический результат - повышение уровня полезного сигнала, снимаемого с элемента Холла, и увеличение площади фрагмента с поверхностным током, контролируемым измерителем. Измеритель поверхностного тока содержит сенсорный модуль с элементом Холла, усилитель, вход которого подключен к выходу элемента Холла, а выход - к индикатору, два концентратора магнитного поля. Заостренные части концентраторов расположены рядом с чувствительной зоной элемента Холла и направлены на нее и навстречу друг другу. Концентраторы магнитного поля выполнены из листового гибкого материала, обеспечивающего плотное прилегание их к поверхности фрагмента с поверхностным током сложной формы, причем геометрические размеры концентраторов магнитного поля соизмеримы с геометрическими размерами контролируемого фрагмента с поверхностным током и значительно превышают геометрические размеры элемента Холла. 1 ил.
Измеритель поверхностного тока, содержащий сенсорный модуль с элементом Холла, усилитель, вход которого подключен к выходу элемента Холла, а выход - к индикатору, два концентратора магнитного поля, заостренные части которых расположены рядом с чувствительной зоной элемента Холла и направлены на нее и навстречу друг другу, отличающийся тем, что концентраторы магнитного поля выполнены из листового гибкого материала, обеспечивающего плотное прилегание их к поверхности фрагмента с поверхностным током сложной формы, причем геометрические размеры концентраторов магнитного поля соизмеримы с геометрическими размерами контролируемого фрагмента с поверхностным током и значительно превышают геометрические размеры элемента Холла.
US 20070164727 A1, 19.07.2007 | |||
US 20080174308 A1, 24.07.2008 | |||
US 5942895 A1, 24.08.1999 | |||
"Optimization of the shape of magnetic field concentrators to improve sensitivity of Hall sensors", P | |||
Leroy, C | |||
Coillot, A | |||
Roux and G | |||
Chanteur, proceedings of the SSD, 05 Congress in 2005 | |||
УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ БОЛЬШИХ ПОСТОЯННЫХ ТОКОВ | 1995 |
|
RU2096787C1 |
БЕСКОНТАКТНЫЙ ИЗМЕРИТЕЛЬ ТОКА | 2011 |
|
RU2465609C1 |
Авторы
Даты
2017-02-08—Публикация
2015-08-17—Подача