Способ получения абразивостойкого электрообогреваемого полимерного слоистого материала Российский патент 2017 года по МПК C03C27/10 C03C27/12 B32B17/10 B32B27/00 

Описание патента на изобретение RU2610774C1

Изобретение относится к многослойным легким ударостойким деталям остекления с применением полимерных стекол и может применяться не только в авиастроении, но и во многих других отраслях промышленности. Применение полимерных стекол обеспечивает повышение ударостойкости, создание броне-, взрыво- и пожаробезопасных систем защитного остекления.

В настоящее время для придания деталям остекления дополнительных функций электрообогрева, защиты и регулирования внешнего светового или электромагнитного воздействия, на поверхность стекол наносят тонкопленочные слои металлов или их соединений. В этом случае, в связи с ослаблением адгезионных связей на границе металл-полимер могут наблюдаться расслоения, проникновение влаги во внутренние слои может вызывать коррозию металлических покрытий.

Известен способ создания противопульной или ударопрочной слоистой прозрачной композиции (стеклокерамика и закаленное силикатное стекло), которая имеет выделяющуюся периферическую зону. Используемая вставка обеспечивает повышение живучести композиции. Недостатком данной системы и ее аналогов является увеличение размеров непрозрачной части остекления за счет увеличения зоны заделки (патент Франции 2795365, МПК С03С 27/12, опубл. 29.12.2000 г.).

Известно многослойное стекло, содержащее на внутренней поверхности склеиваемых слоев противоосколочные пленки для повышения ударной вязкости остекления (патент Франции 2680364, МПК В32В 17/10; B60J 1/00; С03С 17/32; С03С 27/12, опубл. 19.02.1993 г.).

Недостатком известного решения является невысокий уровень свето-, тепло- и радиозащитных свойств.

Известен способ создания прозрачного блока с возможностью его использования в самолетном остеклении, с обеспечением электромагнитной защиты за счет создания воздушного зазора между двумя стеклами с нанесениями на внутреннюю поверхность металлизированной пленки. Недостатком подобного решения является значительное увеличение толщины остекления (патент Франции 2793106, МПК С03С 27/06; Е06В 3/663, опубл. 28.04.1999 г.).

Известен способ создания радиозащитного слоистого материала, включающего слой органического или силикатного стекла и расположенные на нем для придания остеклению стойкости к ударному воздействию и теплозащитных свойств по крайней мере два слоя самоклеящейся пленки из пластифицированного поливинилхлорида с клеящим слоем из поливинилбутираля (ПВБ), на одну из которых нанесено функциональное электропроводящее теплозащитное покрытие из алюминиевой или оловянной фольги (патент Швейцарии 671373, МПК В32В 15/08; В32В 17/10, опубл. 31.09.1989 г.).

Недостатком данного изобретения являются низкая термостойкость пленок и различие между коэффициентами линейного термического расширения поливинилхлорндных пленок и материала остекления, что приводит к возникновению дефектов при перепадах температур в процессе эксплуатации.

Также известен способ создания радиозащитного слоистого материала, включающего слой органического стекла и по крайней мере два слоя полимерной пленки (ламинируются на стекло), на одну из которых нанесено функциональное электропроводящее теплозащитное покрытие, отличающийся тем, что слои полимерной пленки выполнены из полиэтилентерефталата, а между ними расположен дополнительный электропроводный склеивающий слой на основе акриловых полимеров и органических растворителей с диэлектрической проницаемостью ≥60 (патент РФ 2433916, МПК В32В 17/00, опубл. 20.11.2011 г.). Недостатком данного решения является относительно невысокая стойкость к ударному воздействию.

Наиболее близким аналогом, взятым за прототип, является способ изготовления многослойного стекла (патент РФ 2223240, МПК С03С 27/12, опубл. 10.02.2004 г.), включающий в себя сборку пакета из листов стекла, заполнение межстекольного пространства композицией, которая впоследствии полимеризуется под действием ультрафиолетового излучения. Недостатком данного решения является ограничение габаритных и геометрических размеров детали.

Технической задачей и техническим результатом заявленного изобретения является повышение ресурса работы детали остекления до 1,5 раза, снижение до 2 раз удельной массы детали (1,2 кг/м3) (за счет применения органических стекол и поликарбоната), повышение ударной вязкости до значения не менее 30 кДж/м2. Оптические искажения не более 5 мин, светопропускание не меньше 70%.

Для достижения технического результата предложен способ изготовления многослойного стекла, включающий сборку пакета из листов стекла, где в качестве внешнего слоя применяют органическое стекло с нанесенным в вакууме металлическим или полупроводниковым покрытием, в качестве внутреннего слоя - слой поликарбоната, при этом стекла соединяют путем автоклавного прессования с помощью склеивающей пленки из полиуретана, причем на внутреннюю поверхность органического стекла или поликарбоната перед склеиванием наносят адгезивный слой на основе поливинилэтилаля не более 20 мм по периметру, металлическое покрытие выбрано из группы индия, олова, алюминия, серебра, а полупроводниковое - из группы сульфида меди, оксида индия и оксида олова.

Металлическое или полупроводниковое покрытие могут наносить на внутреннюю поверхность слоя из поликарбоната.

Применение пленки из полиуретана в качестве склеивающего слоя, вместо пленки из поливинилбутираля дает преимущество при формовании, поскольку просветляется при более низкой температуре, порядка 80°С против 100°С для поливинилбутираля (температура 95-100°С негативно влияет на ориентированное органическое стекло - появляются микроусадки, способные повредить многослойное стекло).

Адгезивный слой на основе поливинилэтилаля могут наносить только по периметру внутренней поверхности органического стекла или поликарбоната с металлическим или полупроводниковым покрытием для повышения адгезии между слоями, что препятствует образованию дефектов в виде отслоений по периметру или по полю деталей, что связано с проникновением влаги в слои многослойной детали.

Предлагаемое решение получения абразивостойкого электрообогреваемого полимерного слоистого материала (плоского или формованного) заключается в вовлечении изменений в технологию изготовления деталей без изменения габаритов и уменьшении весовых характеристик остекления.

Для выполнения поставленной задачи изготавливают многофункциональные многослойные прозрачные плоские и формованные композиции с применением наиболее энергоемких ударостойких органических стекол в неориентированном и ориентированном состоянии и поликарбоната. На склеиваемые поверхности стекол наносят в вакууме тонкопленочные слои индия, олова и их окислов, алюминия, серебра, сульфида меди и др.

Органическое стекло (в том числе полиакрилатное), как и поликарбонат, обеспечивает снижение веса детали в 2-3 раза, обеспечивает высокую атмосферостойкость, высокую ударную вязкость при ударных локальных нагрузках, а также возможность изготовления деталей с криволинейной поверхностью.

Применение полиуретана в качестве склеивающего слоя обеспечивает высокое качество склейки между внешним и внутренним слоями детали остекления, а также препятствует отслоению при эксплуатации изделия.

Нанесенное в вакууме покрытие образует электропроводящий слой, препятствующий «запотеванию» остекления в процессе эксплуатации.

Автоклавное формование позволяет нам изготавливать крупногабаритные криволинейные детали остекления с высоким качеством склейки (ввиду отсутствия попадания воздуха).

В результате испытаний с целью выявления образовавшихся дефектов было установлено, что в слоях между функциональным покрытием и поверхностями стекла или нанесенным на функциональное покрытие адгезионным поливинилэтилальным покрытием образуются дефекты в виде отслоений по периметру или по полю деталей. Указанный эффект связан с проникновением влаги в слой многослойной детали, контактирующий с функциональными покрытиями, в связи с чем функциональные покрытия наносят на поверхность стекла, оставляя периметр без функционального покрытия. При этом слой адгезивного покрытия наносят только на периметр, свободный от функционального покрытия, что полностью обеспечивает целостность межстекольного зазора при ширине не менее 15-20 мм.

Адгезионный слой представляет собой поливинилэтилальный подслой из 5% раствора смеси этилового и бутилового (или изопропилового) спиртов в соотношении 2:1, наносимый на поверхность стекол, который после нанесения выдерживают на открытом воздухе при комнатной температуре в течение двух часов.

Собранные и спрессованные детали из органического стекла и поликарбоната с электропроводящими и диэлектрическими покрытиями на внутренних сторонах оргстекла или поликарбоната помещают в климатическую камеру и выдерживают при температуре, имитирующей условия максимальной эксплуатации в течение 48 часов (ГОСТ Р 51136-2008).

Применение способа обеспечивает получение слоистого материала со сниженными весовыми показателями в 2-3 раза, поскольку в отличие от традиционного электрообогреваемого остекления, содержащего один из слоев из силикатного стекла, содержит органическое стекло. Кроме того, применение органического стекла и поликорбоната позволяет придать изделию криволинейную форму.

Примеры осуществления

Пример 1

Из листового акрилатного стекла марки АО-120А (ориентированное) и листового поликарбоната марки «Novattro» толщиной 3 мм вырезали заготовки габаритами 500×500, после чего вырезали заготовку поливинилбутиральной пленки толщиной 1,0 мм, габаритом равным габариту стекла марки АО-120А. Заготовки очищались и при необходимости промывались.

Проводилась сушка и отжиг заготовок в течение 6 часов - оргстекла при 80°С, пленки при 55-60°С.

На заготовку стекла АО-120А в вакуумной установке наносилось тонкопленочное покрытие из сплава индия или олова таким образом, чтобы периметр заготовки шириной не более 20 мм оставался без металлического покрытия.

После подготовки заготовок оргстекла и поликарбоната на их внутренние поверхности при комнатной температуре наносился 5% раствор поливинилэтилаля в смеси этилового и бутилового спиртов в соотношении 2:1. Подслой сушился при комнатной температуре в течение 2 часов. На внутреннюю поверхность оргстекла с металлизированным покрытием подслой наносился только по периметру заготовки.

Заготовку из оргстекла клали на сборочный стол металлическим покрытием вверх, укладывали на поверхность оргстекла заготовку полиуретановой пленки марки А-4700, после чего на поверхность пленки клали заготовку поликарбоната. Стеклопакет по углам закрепляли для окончательного формирования пакета.

Прессование в газовом автоклаве «Шольц» проводилось по режиму: разогрев до 75-85°С в течение 1-2 ч при подъеме давления до 2-3 кгс/см2, выдержка 1-2 ч, подъема температуры до 95-105°С в течение 2-3 ч и давлении 6-7 кгс/см2, выдержка 4-6 ч, охлаждение до 40-50°С в течение 4-5 ч под давлением.

Изготовление слоистых деталей по примеру 2 осуществлялись аналогично примеру 1 с тем отличием, что металлизированный слой из алюминия или серебра наносился на внутреннюю поверхность органического стекла. В качестве склеивающей пленки использовалась пленка из полиуретана; на внутреннюю поверхность поликарбоната с металлизированным покрытием из алюминия наносился подслой только по периметру заготовки (табл. 1).

Способ изготовления многослойного стекла по примеру 3 осуществлялся аналогично примеру 1, отличающийся тем, что полупродниковый слой из сульфида меди или оксида индия наносился на внутреннюю поверхность органического стекла; в качестве склеивающей пленки использовалась пленка из полиуретана; на внутреннюю поверхность поликарбоната с полупроводниковым покрытием наносился подслой только по периметру заготовки (табл. 1).

Способ изготовления многослойного стекла по примеру 4 осуществлялся аналогично примеру 1, отличающийся тем, что полупродниковый слой из оксида олова наносился на внутреннюю поверхность органического стекла; в качестве склеивающей пленки использовалась пленка из полиуретана; на внутреннюю поверхность поликарбоната с полупроводниковым покрытием наносился подслой только по периметру заготовки (табл. 1).

Для получения формованных слоистых деталей одинарной кривизны заготовки ориентированного стекла и поликарбоната толщиной 3 мм изгибались при комнатной температуре и закреплялись на оснастке. Затем помещались в термошкаф для оргстекла, разогретый до 85-95°С, для поликарбоната до 140°С. Выдерживались в течение 2-5 часов и охлаждались в закрытом термошкафу до 30-40°С.

Проведенные испытания по выдержке во влажной среде при температуре 50-70°С (ГОСТ Р 51136-2008) образцов, изготовленных по примерам 1-2, полностью подтвердили их высокую влагостойкость. Отлипов и отслоений в металлизированных слоях не наблюдалось.

Таким образом, предлагаемый способ получения слоистого абразивостойкого полимерного остекления с интегрированным электрообогреваемым элементом криволинейной формы позволяет получить многослойное стекло с высокой степенью ориентации оргстекла, ударной вязкостью не менее 30 кДж/м2, а также получить типовую деталь остекления вертолета из абразивостойкого, обогреваемого органического слоистого материала с интегральным коэффициентом пропускания видимого света - не менее 70%.

Похожие патенты RU2610774C1

название год авторы номер документа
МНОГОСЛОЙНОЕ СТЕКЛО ДЛЯ ОСТЕКЛЕНИЯ ТРАНСПОРТНЫХ СРЕДСТВ 2010
  • Акимов Анатолий Алексеевич
  • Ковтун Александр Феодосьевич
  • Парусов Евгений Николаевич
  • Перцев Сергей Федорович
  • Соколов Георгий Федорович
  • Солинов Владимир Федорович
RU2436748C1
Слоистая композиция остекления 2015
  • Шаталин Виктор Анатольевич
  • Чумбаров Михаил Юрьевич
  • Шаталин Никита Викторович
  • Глембовский Николай Робертович
  • Овсянникова Ирина Юрьевна
RU2618878C1
СПОСОБ ИЗГОТОВЛЕНИЯ МНОГОСЛОЙНЫХ ИЗДЕЛИЙ 1978
  • Богуславский И.А.
RU2026268C1
Способ изготовления слоистого органического стекла 1976
  • Корюкин Александр Владимирович
  • Весницкая Галина Сергеевна
  • Гудимов Матвей Матвеевич
SU765333A1
РАДИОЗАЩИТНЫЙ СЛОИСТЫЙ МАТЕРИАЛ 2010
  • Березин Николай Михайлович
  • Богатов Валерий Афанасьевич
  • Грачев Вячеслав Петрович
  • Кондрашов Станислав Владимирович
  • Романов Александр Михайлович
  • Хохлов Юрий Александрович
RU2433916C1
Композиция изделий авиационного остекления на основе монолитного поликарбоната 2016
  • Самсонов Вячеслав Иванович
  • Просовский Олег Федорович
  • Силкин Андрей Николаевич
  • Хмельницкий Анатолий Казимирович
  • Стрелец Михаил Юрьевич
  • Рубанов Станислав Степанович
  • Садков Владимир Анатольевич
RU2637673C1
Способ формования заготовок из органического стекла для изготовления оптических многослойных сложнопрофильных изделий 2020
  • Чечин Дмитрий Евгеньевич
  • Петрачков Дмитрий Николаевич
  • Самсонов Вячеслав Иванович
  • Шаталин Виктор Анатольевич
  • Чумбаров Михаил Юрьевич
  • Шаталин Никита Викторович
RU2759999C1
МНОГОСЛОЙНОЕ ИЗДЕЛИЕ КОНСТРУКЦИОННОЙ ОПТИКИ 2009
  • Худяков Иван Федорович
  • Солинов Владимир Федорович
  • Машир Юрий Иванович
  • Глинкина Марина Ивановна
  • Хализева Ольга Николаевна
RU2396224C1
ОГНЕСТОЙКАЯ КОНСТРУКЦИЯ ОСТЕКЛЕНИЯ ДЛЯ СТЕКЛЯННЫХ КРЫШ 2018
  • Башкиров Александр Владимирович
  • Гвоздовский Валерий Тимофеевич
  • Куран Михаил Александрович
  • Кузнецов Юрий Леонидович
  • Филоненко Иван Андреевич
RU2675921C1
Способ изготовления многослойныхиздЕлий 1979
  • Гудимов Матвей Матвеевич
  • Сентюрин Евгений Георгиевич
  • Дмитриева Раиса Федоровна
  • Маркова Галина Семеновна
  • Румянцева Татьяна Васильевна
SU804589A1

Реферат патента 2017 года Способ получения абразивостойкого электрообогреваемого полимерного слоистого материала

Изобретение относится к многослойным легким ударостойким деталям остекления с применением полимерных стекол и может применяться во многих отраслях промышленности. Способ изготовления многослойного стекла включает сборку пакета из листов стекла, где в качестве внешнего слоя применяют органическое стекло с нанесенным в вакууме металлическим или полупроводниковым покрытием, в качестве внутреннего слоя - слой поликарбоната, при этом стекла соединяют путем автоклавного прессования с помощью склеивающей пленки из полиуретана, причем на внутреннюю поверхность органического стекла и поликарбоната перед склеиванием наносят адгезивный слой на основе поливинилэтилаля не более 20 мм по периметру, при этом металлическое покрытие выбрано из группы индия, олова, алюминия, серебра, а полупроводниковое - из группы сульфида меди, оксида индия и оксида олова. Способ позволяет получить многослойное стекло с улучшенными физико-механическими характеристиками. 1 табл., 4 пр.

Формула изобретения RU 2 610 774 C1

Способ изготовления многослойного стекла, включающий сборку пакета из листов стекла, отличающийся тем, что в качестве внешнего слоя применяют органическое стекло с нанесенным в вакууме металлическим или полупроводниковым покрытием, в качестве внутреннего слоя - слой поликарбоната, при этом стекла соединяют путем автоклавного прессования с помощью склеивающей пленки из полиуретана, причем на внутреннюю поверхность органического стекла и поликарбоната перед склеиванием наносят адгезивный слой на основе поливинилэтилаля не более 20 мм по периметру, металлическое покрытие выбрано из группы индия, олова, алюминия, серебра, а полупроводниковое - из группы сульфида меди, оксида индия и оксида олова.

Документы, цитированные в отчете о поиске Патент 2017 года RU2610774C1

SU 816138 A1, 15.06.1994
Способ изготовления слоистого органического стекла 1976
  • Корюкин Александр Владимирович
  • Весницкая Галина Сергеевна
  • Гудимов Матвей Матвеевич
SU765333A1
РАДИОЗАЩИТНЫЙ СЛОИСТЫЙ МАТЕРИАЛ 2010
  • Березин Николай Михайлович
  • Богатов Валерий Афанасьевич
  • Грачев Вячеслав Петрович
  • Кондрашов Станислав Владимирович
  • Романов Александр Михайлович
  • Хохлов Юрий Александрович
RU2433916C1
Двусторонний тормоз основы к ткацкому станку 1957
  • Бугианишвили С.Е.
  • Саджая Р.И.
  • Тавхелидзе Д.С.
  • Цагарели Н.В.
SU110742A1
Способ изготовления многослойныхиздЕлий 1979
  • Гудимов Матвей Матвеевич
  • Сентюрин Евгений Георгиевич
  • Дмитриева Раиса Федоровна
  • Маркова Галина Семеновна
  • Румянцева Татьяна Васильевна
SU804589A1
CH 671373 A5, 31.08.1989.

RU 2 610 774 C1

Авторы

Каблов Евгений Николаевич

Богатов Валерий Афанасьевич

Хохлов Юрий Александрович

Мекалина Ирина Васильевна

Митин Александр Олегович

Сентюрин Евгений Георгиевич

Фролков Юрий Андреевич

Айзатулина Майся Каюмовна

Крынин Александр Геннадьевич

Даты

2017-02-15Публикация

2015-10-15Подача