СПОСОБ ПОЛУЧЕНИЯ КВАНТОВЫХ ТОЧЕК, ФУНКЦИОНАЛИЗИРОВАННЫХ ДЕНДРИМЕРАМИ Российский патент 2017 года по МПК C09K11/54 C09K11/88 B82B3/00 B82Y40/00 

Описание патента на изобретение RU2611535C1

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения стабильных в водных средах полупроводниковых квантовых точек (КТ) с применением дендримеров в качестве стабилизаторов. Такая КТ имеет в качестве поверхностных лигандов молекулы дендримера с поверхностными аминогруппами, обеспечивающими коллоидную стабильность в водной среде.

В качестве подходящего дендримера может применяться дендример с поверхностными функциональными группами, аналогичными функциональным группам исходных лигандов, связанным с поверхностью КТ. Под исходными лигандами подразумеваются лиганды, стабилизирующие КТ в органических растворителях, в том числе применяемых в ходе синтеза КТ.

Наиболее близким к заявленному техническому решению является способ получения квантовых точек на основе золота, функционализированных с помощью дендримеров (Method for making a ligand-quantum dot conjugate, USA Patent № US8216549B2).

Указанный способ включает получение раствора, содержащего КТ на основе золота в дистиллированной воде с концентрацией 0,2 масс. %, смешивание полученного раствора с раствором полиамидоаминного дендримера с поверхностными гидроксильными группами в метаноле с концентрацией 10 масс. %.

Задачей изобретения является разработка способа получения стабильных в водных средах КТ с высоким квантовым выходом флуоресценции на основе КТ, синтезированных в органических растворителях, путём реакции лигандного обмена с применением дендримеров.

Технический результат заявляемого изобретения заключается в более высоком квантовом выходе КТ (выше 40%) в водной среде за счёт применения КТ на основе селенида кадмия, синтезированных в органических растворителях при высокой температуре. Заявляемый способ отличается простотой процесса, пригодностью полученных частиц для дальнейшего связывания с биомолекулами за счёт большого числа функциональных групп, высоким квантовым выходом полученных КТ и их коллоидной стабильностью в водных средах. Кроме того, заявляемый способ позволяет избежать расходования больших объёмов органических растворителей и применения способов обработки, отличающихся большой длительностью и требующих специального оборудования, таких как, например, ультразвуковая обработка и выпаривание на роторном испарителе.

Указанный технический результат достигается тем, что квантовые точки (КТ) на основе селенида кадмия, полученные в органической среде, добавляют в хлороформ с получением концентрации КТ 4⋅10-8М, смешивают полученный раствор с раствором полиамидоаминного дендримера с поверхностными аминогруппами в метаноле так, чтобы мольное соотношение квантовых точек к дендримеру составляло от 1:700 до 1:1100.

Полученные квантовые точки, функционализированные дендримерами, могут быть подвергнуты переосаждению, включая осаждение путём добавления этилацетата, дальнейшей очистке и последующему растворению или диспергированию в подходящем растворителе, включая воду и буферные растворы, с целью определения оптических, гидродинамических и иных характеристик полученных частиц в указанных растворах.

Возможно использование полиамидоамина 4-го поколения, при этом мольное соотношение квантовых точек к дендримеру составляет от 1:900 до 1:1100, предпочтительно 1:1000, либо полиамидоамина 5-го поколения, при этом мольное соотношение квантовых точек к дендримеру составляет от 1:700 до 1:900, предпочтительно 1:800.

В качестве квантовых точек можно использовать квантовые точки на основе CdSe с оболочкой из других полупроводников, внешний слой которой представляет собой ZnS.

Пример 1. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 4-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:1000. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием прозрачного раствора без видимых частиц, что свидетельствует об отсутствии крупных агрегатов вследствие избытка дендримера и о его достаточном количестве для гидрофилизации КТ. Полученные частицы имели поверхностный заряд, равный примерно -50 мВ, что свидетельствует о высокой коллоидной стабильности частиц.

Снижение квантового выхода КТ после перевода в водную среду составляло 22%. Квантовый выход КТ после перевода в водную среду составлял 41% (согласно измерениям на приборе для измерения абсолютного квантового выхода Quantaurus QY фирмы Hamamatsu).

Пример 2. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 4-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:900. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием прозрачного раствора без видимых частиц, что свидетельствует об отсутствии крупных агрегатов вследствие избытка дендримера и о его достаточном количестве для гидрофилизации КТ. Полученные частицы имели поверхностный заряд, равный примерно -50 мВ, что свидетельствует о высокой коллоидной стабильности частиц.

Снижение квантового выхода КТ после перевода в водную среду составляло 22%. Квантовый выход КТ после перевода в водную среду составлял 40% (согласно измерениям на приборе для измерения абсолютного квантового выхода Quantaurus QY фирмы Hamamatsu).

Пример 3. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 4-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:1100. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием прозрачного раствора без видимых частиц, что свидетельствует об отсутствии крупных агрегатов вследствие избытка дендримера и о его достаточном количестве для гидрофилизации КТ. Полученные частицы имели поверхностный заряд, равный примерно -50 мВ, что свидетельствует о высокой коллоидной стабильности частиц.

Снижение квантового выхода КТ после перевода в водную среду составляло 22%. Квантовый выход КТ после перевода в водную среду составлял 40% (согласно измерениям на приборе для измерения абсолютного квантового выхода Quantaurus QY фирмы Hamamatsu).

Пример 4. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 4-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:800. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок растворялся не полностью, после добавления избытка воды или буферного раствора наблюдались оседающие КТ, что свидетельствует о недостаточном для стабилизации КТ количестве дендримера.

Пример 5. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 4-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:1200. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием мутного раствора, что свидетельствует об образовании крупных рассеивающих свет агрегатов вследствие избытка дендримера.

Пример 6. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 5-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:800. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием прозрачного раствора без видимых частиц, что свидетельствует об отсутствии крупных агрегатов вследствие избытка дендримера и о его достаточном количестве для гидрофилизации КТ. Полученные частицы имели поверхностный заряд, равный примерно -50 мВ, что свидетельствует о высокой коллоидной стабильности частиц.

Снижение квантового выхода КТ после перевода в водную среду составляло 21%. Квантовый выход КТ после перевода в водную среду составлял 41% (согласно измерениям на приборе для измерения абсолютного квантового выхода Quantaurus QY фирмы Hamamatsu).

Пример 7. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 5-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:700. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием прозрачного раствора без видимых частиц, что свидетельствует об отсутствии крупных агрегатов вследствие избытка дендримера и о его достаточном количестве для гидрофилизации КТ. Полученные частицы имели поверхностный заряд, равный примерно -50 мВ, что свидетельствует о высокой коллоидной стабильности частиц.

Снижение квантового выхода КТ после перевода в водную среду составляло 21%. Квантовый выход КТ после перевода в водную среду составлял 41% (согласно измерениям на приборе для измерения абсолютного квантового выхода Quantaurus QY фирмы Hamamatsu).

Пример 8. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 5-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:900. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием прозрачного раствора без видимых частиц, что свидетельствует об отсутствии крупных агрегатов вследствие избытка дендримера и о его достаточном количестве для гидрофилизации КТ. Полученные частицы имели поверхностный заряд, равный примерно -50 мВ, что свидетельствует о высокой коллоидной стабильности частиц.

Снижение квантового выхода КТ после перевода в водную среду составляло 21%. Квантовый выход КТ после перевода в водную среду составлял 41% (согласно измерениям на приборе для измерения абсолютного квантового выхода Quantaurus QY фирмы Hamamatsu).

Пример 9. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 5-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:600. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок растворялся не полностью, после добавления избытка воды или буферного раствора наблюдались оседающие КТ, что свидетельствует о недостаточном для стабилизации КТ количестве дендримера.

Пример 10. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 5-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:1000. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием мутного раствора, что свидетельствует об образовании крупных рассеивающих свет агрегатов вследствие избытка дендримера.

Похожие патенты RU2611535C1

название год авторы номер документа
СПОСОБ ВЫДЕЛЕНИЯ И ОЧИСТКИ КВАНТОВЫХ ТОЧЕК, ЗАКЛЮЧЕННЫХ В ОБОЛОЧКИ ОКСИДА КРЕМНИЯ 2014
  • Горячева Ирина Юрьевна
  • Гофтман Валентина Вадимовна
  • Сперанская Елена Сергеевна
  • Сухоруков Глеб Борисович
RU2570830C2
СПОСОБ МОДИФИКАЦИИ ПОВЕРХНОСТИ НАНОЧАСТИЦ ОКСИДА КРЕМНИЯ С ВКЛЮЧЕННЫМИ КВАНТОВЫМИ ТОЧКАМИ 2015
  • Горячева Ирина Юрьевна
  • Гофтман Валентина Владимировна
RU2611541C2
СПОСОБ МЕЖФАЗНОГО ПЕРЕНОСА НЕОРГАНИЧЕСКИХ КОЛЛОИДНЫХ ПОЛУПРОВОДНИКОВЫХ НАНОКРИСТАЛЛОВ 2014
  • Баранов Александр Васильевич
  • Гунько Юрий Кузьмич
  • Маслов Владимир Григорьевич
  • Мухина Мария Викторовна
  • Орлова Анна Олеговна
  • Федоров Анатолий Валентинович
RU2583097C2
СПОСОБ ГИДРОФИЛИЗАЦИИ КВАНТОВЫХ ТОЧЕК 2021
  • Дрозд Даниил Дмитриевич
  • Строкин Павел Дмитриевич
  • Горячева Ольга Алексеевна
  • Горячева Ирина Юрьевна
  • Мошков Александр Сергеевич
RU2786239C1
СПОСОБ КОЛЛОИДНОГО СИНТЕЗА КВАНТОВЫХ ТОЧЕК СТРУКТУРЫ ЯДРО/МНОГОСЛОЙНАЯ ОБОЛОЧКА 2018
  • Самохвалов Павел Сергеевич
  • Линьков Павел Алексеевич
RU2692929C1
Люминесцентный сенсор для мультиплексного (спектрально-временного) детектирования аналитов в водных средах и способ его получения 2020
  • Дубовик Алексей Юрьевич
  • Баранов Александр Васильевич
  • Кузнецова Вера Александровна
  • Куршанов Данил Александрович
  • Ушакова Елена Владимировна
  • Баранов Михаил Александрович
  • Осипова Виктория Александровна
  • Черевков Сергей Александрович
RU2769756C1
Способ получения коллоидных квантовых точек для применения в медицинской диагностике 2022
  • Попова Анна Анатольевна
  • Андреев Евгений Валерьевич
  • Рудных Сергей Константинович
  • Новикова Сагила Аладдиновна
  • Грибова Елена Дмитриевна
  • Гладышев Павел Павлович
  • Сергеев Сергей Николаевич
  • Сидоров Евгений Александрович
RU2809097C1
Флуоресцентная многоцелевая наноразмерная метка и конъюгаты на её основе 2021
  • Кузнецов Денис Бахтиерович
  • Дежуров Сергей Валерьевич
RU2777648C1
Способ декорирования поверхности полупроводниковых квантовых точек AgS наночастицами золота для управления люминесцентными свойствами 2021
  • Овчинников Олег Владимирович
  • Смирнов Михаил Сергеевич
  • Кондратенко Тамара Сергеевна
  • Дерепко Виолетта Николаевна
  • Гревцева Ирина Геннадьевна
  • Перепелица Алексей Сергеевич
  • Асланов Сергей Владимирович
RU2773321C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА НА ОСНОВЕ ЖИДКОКРИСТАЛЛИЧЕСКОЙ ПОЛИМЕРНОЙ МАТРИЦЫ И НЕОРГАНИЧЕСКОГО ПОЛУПРОВОДНИКА 2009
  • Шандрюк Георгий Александрович
  • Тальрозе Раиса Викторовна
  • Шаталова Алина Михайловна
  • Мерекалов Алексей Сократович
RU2414491C1

Реферат патента 2017 года СПОСОБ ПОЛУЧЕНИЯ КВАНТОВЫХ ТОЧЕК, ФУНКЦИОНАЛИЗИРОВАННЫХ ДЕНДРИМЕРАМИ

Изобретение относится к нанотехнологиям. Сначала получают раствор квантовых точек на основе селенида кадмия в хлороформе с их концентрацией 4⋅10-8 М и смешивают его с раствором дендримера в метаноле так, чтобы мольное соотношение квантовых точек к дендримеру составляло от 1:700 до 1:1100. В качестве дендримера используют полиамидоаминный дендример с поверхностными аминогруппами, например полиамидоамин 4-го или 5-го поколения. Квантовые точки на основе CdSe могут быть покрыты оболочкой из других полупроводников, внешний слой которой представляет собой ZnS. Полученную смесь дважды промывают этилацетатом при центрифугировании, надосадочную жидкость отбирают, а осадок растворяют в растворителе. Полученные квантовые точки, функционализированные дендримерами, характеризуются высокой стабильностью в водных средах, квантовым выходом выше 40% и пригодны для дальнейшего связывания с биомолекулами. Способ прост и экономичен. 3 з.п. ф-лы, 10 пр.

Формула изобретения RU 2 611 535 C1

1. Способ получения квантовых точек, функционализированных с помощью дендримеров, включающий получение раствора, содержащего квантовые точки, смешивание полученного раствора с раствором дендримера в метаноле, отличающийся тем, что получают раствор квантовых точек на основе селенида кадмия в хлороформе с их концентрацией 4⋅10-8 М, в качестве дендримера используют полиамидоаминный дендример с поверхностными аминогруппами, смешивание указанных растворов проводят так, чтобы мольное соотношение квантовых точек к дендримеру составляло от 1:700 до 1:1100, полученную смесь дважды промывают этилацетатом при центрифугировании, надосадочную жидкость отбирают, а осадок растворяют в растворителе.

2. Способ по п. 1, отличающийся тем, что используют полиамидоамин 4-го поколения, при этом мольное соотношение квантовых точек к дендримеру составляет от 1:900 до 1:1100, предпочтительно 1:1000.

3. Способ по п. 1, отличающийся тем, что используют полиамидоамин 5-го поколения, при этом мольное соотношение квантовых точек к дендримеру составляет от 1:700 до 1:900, предпочтительно 1:800.

4. Способ по п. 1, отличающийся тем, что в качестве квантовых точек выбирают квантовые точки на основе CdSe с оболочкой из других полупроводников, внешний слой которой представляет собой ZnS.

Документы, цитированные в отчете о поиске Патент 2017 года RU2611535C1

Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА ДЛЯ ИЗГОТОВЛЕНИЯ СВЕТОКОРРЕКТИРУЮЩЕЙ ПОЛИМЕРНОЙ ПЛЕНКИ 2013
  • Крикушенко Владимир Владимирович
RU2567909C2
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1
ЯББАРОВ Н.Г
и др
Мультифункциональные дендритные молекулы: перспективы применения в медицине и биологии
Молекулярная медицина, 2012, no
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
E
ROLAND MENZEL, Recent Advances in Photoluminecsence Detection of Fingerprints, TheScientificWorld, 2001, v
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Льномолотилка веялка 1923
  • Коколин П.Ф.
SU498A1

RU 2 611 535 C1

Авторы

Горячева Ирина Юрьевна

Потапкин Дмитрий Викторович

Даты

2017-02-28Публикация

2015-12-08Подача