СПОСОБ ВЫДЕЛЕНИЯ И ОЧИСТКИ КВАНТОВЫХ ТОЧЕК, ЗАКЛЮЧЕННЫХ В ОБОЛОЧКИ ОКСИДА КРЕМНИЯ Российский патент 2015 года по МПК B82B3/00 B82Y15/00 

Описание патента на изобретение RU2570830C2

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения стабильных водных растворов полупроводниковых квантовых точек (КТ), покрытых оболочками оксида кремния, полученных на основе кремнийорганических соединений различного строения. Данный нанокомпозит представляет собой наночастицу оксида кремния с включенными внутрь нее КТ.

Существует метод синтеза КТ, заключенных в оболочки оксида кремния (Shiquan Wang, Chunliang Li, Ping Yang, Masanori Ando, Norio Murase. Silica encapsulation of highly luminescent hydrophobic quantum dots by two-step microemulsion method. Colloids and Surfaces A: Physicochem. Eng. Aspects 395 (2012) P. 24-31). Данный метод позволяет варьировать размер и яркость получаемых частиц и использовать мягкий метод очистки с помощью центрифугирования и промывки этанолом. Для этого микроэмульсию подвергают центрифугированию при 16500 об/мин в течение 10 мин, осадок дважды промывают этанолом и водой, затем растворяют в воде. Однако данная методика не приводит к большому выходу продукта, и нанокомпозит, получаемый по данной методике очистки, плохо растворяется в водных растворах без дополнительных манипуляций, например ультразвуковой обработки.

Известен также метод синтеза в микроэмульсии и последующей очистки КТ, покрытых кремнийорганическими оболочками (Masih Darbandi, Gerald Urban, Michael Krüge. A facile synthesis method to silica coated CdSe/ZnS nanocomposites with tuneable size and optical properties. Journal of Colloid and Interface Science, 351 (2010) P. 30-34). Данный метод позволяет количественно высаживать полученные частицы из микроэмульсии, образованной в процессе синтеза нанокомпозитов. Для этого к микроэмульсии добавляют ацетон, центрифугируют, полученный осадок последовательно промывают бутанолом, пропанолом, этанолом и водой и растворяют в воде. Основным недостатком данного метода является тот факт, что при добавлении ацетона в микроэмульсию осаждению подвергаются не только КТ, заключенные в оболочки оксида кремния, но и КТ без оболочек, которые в силу разных причин могли остаться в микроэмульсии. Этот процесс в дальнейшем мешает растворению получившейся субстанции в водных растворах, а также не позволяет оценивать характеристики полученных нанокомпозитов.

Наиболее близким к заявленному техническому решению является метод синтеза, выделения и очистки нанокомпозитов оксида кремния с КТ (Takuji Aimiya, Masaru Takahashi. Silica nanoparticle embedding quantum dots, preparation method thereof and biosubstance labeling agent by use thereof. United States Patent Application Publication № US 2012/0045850 A1). Данный метод позволяет получать яркие стабильные растворы нанокомпозита оксида кремния с КТ. В данной методике выделение полученных нанокомпозитов производится с помощью центрифугирования при 9500 об/мин в течение 60 мин. Для очистки от компонентов микроэмульсии осадок, образовавшийся после центрифугирования, растворяют в этаноле, подвергают повторному центрифугированию. Процедуру очистки, включающую в себя разбавление полученного осадка, его растворение, центрифугирование и слив надосадочной жидкости, повторяют с этанолом и водой. Очищенные квантовые точки разбавляют водой. Однако недостатком метода является длительность центрифугирования на стадии очистки полученных частиц, что приводит к затруднению их дальнейшего растворения вследствие вероятной деформации структуры внешних оболочек. Данный метод принят за прототип.

Задачей изобретения является разработка способа выделения и очистки нанокомпозитов оксида кремния с КТ от компонентов реакционной смеси, заключающегося в определенном режиме центрифугирования (количество оборотов в минуту и температура) и использовании различных промывочных реактивов (этанол, пропанол, бутанол).

Технический результат заявляемого изобретения заключается в увеличении количества и улучшении качества наночастиц, стабилизированных в водных средах. Заявленный технический результат достигается использованием определенного режима центрифугирования КТ, заключенных в кремнийорганические оболочки, а также алгоритма очистки и растворения полученных частиц. Этот алгоритм отличается высоким выходом продукта, простотой процесса и обеспечивает максимальную устойчивость полученных наночастиц в водных растворах.

Указанный технический результат достигается тем, что способ выделения и очистки квантовых точек, заключенных в оболочки оксида кремния, включает последовательное выделение квантовых точек, их троекратную очистку и разбавление бидистиллированной водой, причем выделение включает центрифугирование микроэмульсии с синтезированными квантовыми точками и удаление надосадочной жидкости для получения осадка, а очистка включает последовательное разбавление осадка, перемешивание, центрифугирование, удаление надосадочной жидкости, при этом в первой и второй очистке для разбавления используют спирт, согласно решению в качестве спирта используют этанол, или пропанол, или бутанол, в третьей очистке для разбавления используют этанол, а после разбавления очищенных квантовых точек бидистиллированной водой проводят ультразвуковую обработку в течение 30 мин, при этом центрифугирование во время выделения квантовых точек осуществляют при 7000-11500 об/мин и 5-15°C в течение 10-30 мин, а центрифугирование во время очистки осуществляют при 7000 об/мин и 20°C в течение 15 мин. Ультразвуковую обработку проводят при температуре от 20 до 40°C.

Раскрытие изобретения

КТ структуры CdSe/CdS/ZnS были получены по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics, 53 (2014) P. 225-231). Полученные КТ заключали в оболочки оксида кремния согласно методике (Shiquan Wang, Chunliang Li, Ping Yang, Masanori Ando, Norio Murase. Silica encapsulation of highly luminescent hydrophobic quantum dots by two-step microemulsion method. Colloids and Surfaces A: Physicochem. Eng. Aspects, 395 (2012) P. 24-31): для создания микроэмульсии использовали циклогексан, поверхностно-активное вещество Igepal-520 и бидистиллированную воду, в качестве кремнийорганического соединения использовали ТЕОС (тетраэтилортосилан), МПС (3-меркаптопропилтриметоксисилан). После проведения реакции микроэмульсию центрифугировали в интервале 7000-11500 об/мин, при таких оборотах и в выбранных временных рамках центрифугирования (10-30 мин) структура полученного нанокомпозита не разрушается. Далее производили троекратную процедуру очистки, включающую в себя добавление к полученному осадку растворителя (спирта), тщательное перемешивание и центрифугирование при 7000 об/мин и слив надосадочной жидкости. Полученный осадок растворяли в воде с использованием ультразвуковой обработки при различных температурах.

Примеры реализации способа

Пример 1.

По окончании синтеза микроэмульсию центрифугируют при 7000 об/мин в течение 30 минут при 10°C. После осаждения частиц надосадочную жидкость сливают. К полученному осадку приливают пропанол, тщательно перемешивают с помощью прибора Вортекс (Vortex). Проводят центрифугирование при 7000 об/мин и 20°C в течение 15 минут. После осаждения частиц надосадочную жидкость сливают. К полученному осадку приливают этанол, тщательно перемешивают с помощью прибора Вортекс (Vortex). Проводят центрифугирование при 7000 об/мин и 20°C в течение 15 минут. Процедуру очистки с помощью этанола проводят еще 1 раз. После этого частицы высушивают на воздухе. Далее приливают деионизованную воду, перемешивают с помощью Вортекса и помещают в ультразвуковую ванну на 30 минут. После чего получают прозрачный водный раствор нанокомпозита оксида кремния с КТ.

Пример 2.

По окончании синтеза микроэмульсию центрифугируют при 9500 об/мин в течение 15 минут при 5°C. После осаждения частиц надосадочную жидкость сливают. К полученному осадку приливают этанол, тщательно перемешивают. Проводят центрифугирование при 7000 об/мин и 20°C в течение 15 минут. После осаждения частиц надосадочную жидкость сливают. Процедуру очистки с помощью этанола проводят еще 2 раза. После этого частицы высушивают на воздухе. Далее приливают бидистиллированную воду, перемешивают и помещают в ультразвуковую ванну на 30 минут при нагревании до 40°C. После чего получают прозрачный водный раствор нанокомпозита оксида кремния с КТ.

Пример 3.

По окончании синтеза микроэмульсию центрифугируют при 11500 об/мин в течение 10 минут при 15°C. После осаждения частиц надосадочную жидкость сливают. К полученному осадку приливают бутанол, тщательно перемешивают с помощью прибора Вортекс (Vortex). Проводят центрифугирование при 7000 об/мин и 20°C в течение 15 минут. После осаждения частиц надосадочную жидкость сливают. Процедуру очистки последовательно повторяют с пропанолом и этанолом. После этого частицы высушивают на воздухе. Далее приливают бидистиллированную воду, перемешивают с помощью Вортекса и помещают в ультразвуковую ванну на 30 минут. После чего получают прозрачный водный раствор нанокомпозита оксида кремния с КТ.

В результате всех описанных выше примеров получают прозрачные, стабильные более шести месяцев водные растворы нанокомпозита оксида кремния с КТ, отличающиеся высоким квантовым выходом флуоресценции.

Похожие патенты RU2570830C2

название год авторы номер документа
СПОСОБ ГИДРОФИЛИЗАЦИИ КВАНТОВЫХ ТОЧЕК 2021
  • Дрозд Даниил Дмитриевич
  • Строкин Павел Дмитриевич
  • Горячева Ольга Алексеевна
  • Горячева Ирина Юрьевна
  • Мошков Александр Сергеевич
RU2786239C1
СПОСОБ СИНТЕЗА ПОКРЫТИЙ ИЗ ДИОКСИДА КРЕМНИЯ ДЛЯ КОЛЛОИДНЫХ НАНОЧАСТИЦ ЗОЛОТА РАЗЛИЧНОЙ ГЕОМЕТРИИ 2020
  • Овчинников Олег Владимирович
  • Смирнов Михаил Сергеевич
  • Гревцева Ирина Геннадьевна
  • Перепелица Алексей Сергеевич
  • Кондратенко Тамара Сергеевна
  • Чевычелова Тамара Андреевна
  • Дерепко Виолетта Николаевна
RU2769057C1
СПОСОБ МОДИФИКАЦИИ ПОВЕРХНОСТИ НАНОЧАСТИЦ ОКСИДА КРЕМНИЯ С ВКЛЮЧЕННЫМИ КВАНТОВЫМИ ТОЧКАМИ 2015
  • Горячева Ирина Юрьевна
  • Гофтман Валентина Владимировна
RU2611541C2
Способ получения фотокатализатора на основе высокопористого наноструктурированного монолитного оксида алюминия, инкрустированного неагломерированными квантовыми точками, и способ синтеза квантовых точек ZnCdS 2022
  • Надточенко Виктор Андреевич
  • Ходан Анатолий Николаевич
  • Костров Андрей Николаевич
  • Кочев Сергей Юрьевич
  • Кабачий Юрий Алексеевич
  • Васин Александр Александрович
RU2808200C1
Способ изготовления индикаторных микрокапсул с использованием магнитных и плазмонных наночастиц 2020
  • Дубовик Алексей Юрьевич
  • Куршанов Данил Александрович
  • Рогач Андрей
  • Арефина Ирина Александровна
RU2758098C1
СПОСОБ ПОЛУЧЕНИЯ КВАНТОВЫХ ТОЧЕК, ФУНКЦИОНАЛИЗИРОВАННЫХ ДЕНДРИМЕРАМИ 2015
  • Горячева Ирина Юрьевна
  • Потапкин Дмитрий Викторович
RU2611535C1
СПОСОБ КОЛЛОИДНОГО СИНТЕЗА КВАНТОВЫХ ТОЧЕК СТРУКТУРЫ ЯДРО/МНОГОСЛОЙНАЯ ОБОЛОЧКА 2018
  • Самохвалов Павел Сергеевич
  • Линьков Павел Алексеевич
RU2692929C1
НЕ ПОДВЕРЖЕННЫЙ СПЕКАНИЮ КАТАЛИЗАТОР ГИДРИРОВАНИЯ И ДЕГИДРИРОВАНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2008
  • Вольф Аурел
  • Млечко Леслав
  • Ассманн Йенс
  • Раушер Франк
RU2480278C2
ГАЗОАНАЛИТИЧЕСКИЙ МУЛЬТИСЕНСОРНЫЙ ЧИП НА ОСНОВЕ ГРАФЕНА, МОДИФИЦИРОВАННОГО НАНОЧАСТИЦАМИ БЛАГОРОДНЫХ МЕТАЛЛОВ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2023
  • Рабчинский Максим Константинович
  • Сысоев Виктор Владимирович
  • Рыжков Сергей Александрович
  • Стручков Николай Сергеевич
  • Соломатин Максим Андреевич
  • Варежников Алексей Сергеевич
  • Червякова Полина Демидовна
  • Габрелян Владимир Сасунович
  • Столярова Дина Юрьевна
  • Полукеева Анна Владимировна
  • Кириленко Демид Александрович
  • Байдакова Марина Владимировна
  • Петухов Владимир Александрович
  • Павлов Сергей Игоревич
  • Брунков Павел Николаевич
RU2814586C1
ГАЗОАНАЛИТИЧЕСКИЙ МУЛЬТИСЕНСОРНЫЙ ЧИП НА ОСНОВЕ АМИНИРОВАННОГО ГРАФЕНА, МОДИФИЦИРОВАННОГО НАНОЧАСТИЦАМИ ГИДРОКСИДОВ И ОКСИДОВ НИКЕЛЯ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2023
  • Рабчинский Максим Константинович
  • Сысоев Виктор Владимирович
  • Рыжков Сергей Александрович
  • Стручков Николай Сергеевич
  • Соломатин Максим Андреевич
  • Варежников Алексей Сергеевич
  • Червякова Полина Демидовна
  • Савельев Святослав Даниилович
  • Габрелян Владимир Сасунович
  • Улин Николай Владимирович
  • Кириленко Демид Александрович
  • Павлов Сергей Игоревич
  • Брунков Павел Николаевич
RU2814613C1

Реферат патента 2015 года СПОСОБ ВЫДЕЛЕНИЯ И ОЧИСТКИ КВАНТОВЫХ ТОЧЕК, ЗАКЛЮЧЕННЫХ В ОБОЛОЧКИ ОКСИДА КРЕМНИЯ

Использование: для получения стабильных водных растворов полупроводниковых квантовых точек (КТ), покрытых оболочками оксида кремния, полученных на основе кремнийорганических соединений различного строения. Сущность изобретения заключается в том, что способ выделения и очистки квантовых точек, заключенных в оболочки оксида кремния, включает последовательное выделение квантовых точек, их троекратную очистку и разбавление бидистиллированной водой, причем выделение включает центрифугирование микроэмульсии с синтезированными квантовыми точками и удаление надосадочной жидкости для получения осадка, а очистка включает последовательное разбавление осадка, перемешивание, центрифугирование, удаление надосадочной жидкости, при этом в первой и второй очистке для разбавления используют спирт, согласно решению в качестве спирта используют этанол, или пропанол, или бутанол, в третьей очистке для разбавления используют этанол, а после разбавления очищенных квантовых точек бидистиллированной водой проводят ультразвуковую обработку в течение 30 мин, при этом центрифугирование во время выделения квантовых точек осуществляют при 7000-11500 об/мин и 5-15°C в течение 10-30 мин, а центрифугирование во время очистки осуществляют при 7000 об/мин и 20°C в течение 15 мин. Технический результат: обеспечение возможности увеличения количества и улучшения качества наночастиц, стабилизированных в водных средах. 1 з.п. ф-лы.

Формула изобретения RU 2 570 830 C2

1. Способ выделения и очистки квантовых точек, заключенных в оболочки оксида кремния, включающий последовательное выделение квантовых точек, их троекратную очистку и разбавление бидистиллированной водой, причем выделение включает центрифугирование микроэмульсии с синтезированными квантовыми точками и удаление надосадочной жидкости для получения осадка, а очистка включает последовательное разбавление осадка, перемешивание, центрифугирование, удаление надосадочной жидкости, при этом в первой и второй очистке для разбавления используют спирт, отличающийся тем, что в качестве спирта используют этанол, или пропанол, или бутанол, в третьей очистке для разбавления используют этанол, а после разбавления очищенных квантовых точек бидистиллированной водой проводят ультразвуковую обработку в течение 30 мин, при этом центрифугирование во время выделения квантовых точек осуществляют при 7000-11500 об/мин и 5-15°C в течение 10-30 мин, а центрифугирование во время очистки осуществляют при 7000 об/мин и 20°C в течение 15 мин.

2. Способ по п. 1, отличающийся тем, что ультразвуковую обработку проводят при температуре от 20 до 40°C.

Документы, цитированные в отчете о поиске Патент 2015 года RU2570830C2

US 20110263037 A1, 27.10.2011
US 20120045850 A1, 23.02.2012
US 7745001 B2, 29.06.2010
WO 2010024724 A3, 04.03.2010
САМОХОДНЫЙ МНОГОФУНКЦИОНАЛЬНЫЙ КРАН ДЛЯ ОБУСТРОЙСТВА СЕЛА 2008
  • Сафонов Георгий Леонидович
RU2385834C1
ПОДВИЖНАЯ ДИАГРАММА 1928
  • Степанов В.В.
SU17861A1

RU 2 570 830 C2

Авторы

Горячева Ирина Юрьевна

Гофтман Валентина Вадимовна

Сперанская Елена Сергеевна

Сухоруков Глеб Борисович

Даты

2015-12-10Публикация

2014-04-17Подача