Состав для защитного покрытия Российский патент 2017 года по МПК C09D5/00 B82B3/00 

Описание патента на изобретение RU2613770C1

Изобретение относится к составам для нанесения покрытий, снимающихся одним слоем, в частности к защитным составам от атмосферного воздействия, старения, биоповреждений полимерных изделий, неокрашенных поверхностей дерева, металла, окрашенных декоративных покрытий изделий деревообработки и машиностроения в условиях транспортирования, и может быть использовано во всех отраслях для консервации техники при хранении на открытых площадках.

Практика применения водно-восковых составов для нанесения защитных покрытий показала, что рецептура состава должна удовлетворять ряду технологических требований, обеспечивающих: однородность нанесения покрытия на защищаемую поверхность любым методом (распылением, окунанием, кистью); образование на защищаемой поверхности сплошного пластично-твердого, обратно неэмульгируемого и нестираемого покрытия; стойкость покрытия при температурах от минус 50°C до плюс 60°C; пожаробезопасность и нетоксичность; защиту поверхности в условиях хранения на открытой площадке на срок не менее трех лет; стойкость покрытия к воздействию микроорганизмов.

В настоящее время для решения этих задач применяются составы ЗВВД-13 (1 - ТУ 38.101716-78 «Защитный водно-восковой состав ЗВВД-13») и ИВВС-706М (2 - ТУ 38.401123-86 «Ингибированный водно-восковой состав ИВВС-706М»), в рецептуру которых входит дисперсия нефтяных церезинов (3 - ГОСТ 2488-79 «Церезин. Технические условия») и водный раствор аммиака. Автоконсервант (4 - ТУ 6-15-870-78 «Автоконсервант»), содержащий очищенные парафины технического назначения (5 - ГОСТ 23683-89 «Парафины. Технические условия»), эмульгатор на основе синтетических жирных кислот C17-C21, аммиак и воду.

Общим недостатком вышеперечисленных составов являются: низкая стойкость (менее 6-ти месяцев) защитного покрытия, полученного на их основе, к воздействию агрессивных сред: соляного тумана, морской воды, сернистого ангидрида - из-за нарушения однородности покрытия в результате растрескивания и отслаивания при отрицательных температурах (ниже минус 20°C), стекания (смывания атмосферными осадками) при повышенных (выше плюс 25°C) температурах вследствие снижения адгезионных и пластифицирующих свойств покрытия из воскообразного вещества в композиции с эмульгатором; недостаточная стойкость к воздействию микроорганизмов и биоповреждений из-за отсутствия биоцидных свойств; токсичность составов на основе органических растворителей и водных растворов аммиака (при нанесении защитного покрытия методом пневматического и безвоздушного распыления составы образуют высокоопасные аэрозоли, которые по степени воздействия на организм человека относятся ко 2 классу опасности (6 - ГОСТ 121.007-76 «Классы опасности вредных веществ») и требуют проведения работ по консервации в изолирующих средствах защиты дыхания); недостаточная инертность к лакокрасочным покрытиям, РТИ и полимерным материалам (в момент формирования покрытия - нанесения состава, органические растворители и водные растворы аммиака взаимодействуют с материалом лакокрасочного покрытия, снижая его адгезионные и декоративные свойства, а при взаимодействии с РТИ и полимерными материалами ухудшают топливо- и морозостойкие свойства данных материалов).

Указанные выше недостатки известных защитных покрытий на основе водно-восковых составов приводят к существенным ограничениям в использовании их по назначению.

Наиболее близким по технической сущности и взятым за прототип является состав защитного покрытия на водно-восковой основе, включающий в качестве воскообразного вещества нефтяной церезин с температурой каплепадения 65-95°C (15-25% по массе), а в качестве эмульгатора - одно- и двузамещенные амиды фракции синтетических жирных кислот C17-C21 трибората моноэтаноламина (2-8% по массе), вода - остальное (7 - РФ патент № 2156268 - прототип).

Недостатком этого состава являются низкие противомикробные и барьерные свойства материала защитного покрытия, снижающие время эффективной защиты. Это обусловлено тем, что нефтяной церезин с температурой каплепадения более 70°C обладает недостаточным физическим сродством к защищаемым поверхностям (низкая адгезия), что приводит к ограниченному биоцидному действию по различным типам плесневых грибов и низким барьерным свойствам по отношению к кислороду, являющимся катализатором химических и биологических коррозионных процессов материалов.

Технический результат изобретения - повышение эффективности защитных свойств покрытия за счет улучшения адгезии материала покрытия к защищаемым поверхностям, биоцидных свойств к различным типам плесневых грибов и барьерных свойств материала защитного покрытия.

Указанный технический результат достигается тем, что известный состав для защитного покрытия, содержащий нефтяной церезин с заданной температурой каплепадения, однозамещенные амиды фракции синтетических жирных кислот (СЖК) C17-C21 трибората моноэтаноламина и воду, согласно изобретению дополнительно содержит наноглины общей химической формулы

с отношением n:p 1,0-1,1, нефтяной церезин с температурой каплепадения не выше 70°C, при следующем соотношении компонентов, мас.%:

нефтяной церезин с температурой каплепадения 65-70°C 15,0-25,0 однозамещенные амиды фракции СЖК C17-C21 трибората моноэтаноламина 2,5-9,5 наноглины общей химической формулы {Mg3[Si4O10][OH]2}⋅p{[Al,Fe•••]2[Si4O10][OH]2}⋅nH2O (с отношением n:p 1,0-1,1) 1,0-2,0 вода остальное

Сопоставительный анализ с прототипом (табл. 1) позволил сделать вывод, что заявляемый состав для защитного покрытия отличается от известного введением дополнительного компонента, а именно наноглины общей химической формулы

(отношение n:p 1,0-1,1).

Таким образом, заявляемое техническое решение соответствует критерию «новизна».

Нефтяной церезин с температурой каплепадения преимущественно не выше 65-70°C представляет собой высокомолекулярные парафиновые углеводороды, широко используется при производстве пластичных смазок в качестве загустителя. Получают нефтяной церезин путем переработки и очистки озокеритов, нефтяных неочищенных церезинов и парафинистой пробки или их смеси в любом соотношении. В зависимости от температуры каплепадения и области применения установлены пять марок нефтяного церезина: 65, 70, 75, 80, 80э. Церезин марки 80э предназначен для предприятий электронной промышленности (см. стр. 1 ссылка 3).

Известно использование одно- и двузамещенных амидов фракции СЖК C17-C21 трибората моноэтаноламина в качестве ингибиторов коррозии (8 - Брегман Дж. Ингибиторы коррозии. - Л.: Химия, 1978, 164 с.). Одно- и двузамещенные амиды фракции СЖК C17-C21 трибората моноэтаноламина представляют собой азотсодержащие соединения, применяются в промышленности как широко распространенные ПАВ-ингибиторы коррозии. Однако при исследовании авторами было установлено, что двузамещенные амиды фракции СЖК C17-C21 трибората моноэтаноламина при смешении компонентов неравномерно распределяются в готовой эмульсии, что приводит к ухудшению антикоррозионных и противомикробных свойств материала по всей поверхности защитного покрытия. Поэтому в заявляемом составе авторами было принято решение использовать в качестве эмульгатора - ингибитора коррозии только однозамещенные амиды фракции СЖК C17-C21 трибората моноэтаноламина.

Наноглины общей химической формулы

с отношением n:p 1,0-1,1 производятся из смектитных глин, таких как монтмориллонит (далее по тексту наноглины). Монтмориллонит в небольших количествах встречается по всему миру в своем естественном геологическом состоянии, в том числе в России.

Наноглина представляет собой глинистый материал филлосиликатной или листовой структуры, толщина листов которой составляет около 1 нм, а линейные размеры поверхности - 50÷150 нм. Площадь поверхности наноглин составляет 750 м2/г. Модифицированная глина (органоглина, прошедшая обработку четвертичными аммониевыми соединениями) имеет преимущества над простой глиной: хорошо диспергируется в полимерной матрице и взаимодействуют с цепочкой полимера, без изменения структуры и свойств последнего. При этом в ходе ионообменной реакции модификации поверхности положительно заряженная четвертичная аммониевая соль замещает натриевые катионы на поверхности глины. В результате реакции модификации гидрофильная глина превращается в гидрофобную наноглину (9 - 10.10.2013 г. материалы сайта http://www.e-plastic/ru. Наноглины и их развивающиеся рынки). Полученные наноглины применяются в составе полимерных композиционных материалов в автомобилестроении (повышенная термическая стойкость), в упаковочной промышленности (барьерная многослойная упаковка для соков и пива, для мясопродуктов, рыбы и т.п.), в косметической промышленности (упаковка), в кабельной отрасли (в составе изоляционных материалов).

Компания Nanocor, Inc. (10 - 12.02.2009 г. материалы сайта http://nano-portal.ru) представила серию полиолефиновых маточных смесей с наноглиной nanoMax, содержащих от 40 до 60% монтмориллонитных наноглин компании Nanomer. По имеющимся данным, всего при 2-8% содержании по массе полимера, улучшаются механические свойства полиэтилена, полипропилена, линейного полиэтилена на 8-12%, существенно снижается их газо- и паропроницаемость, а также стойкость к действию микроорганизмов. Введением наноглины в состав полимерного покрытия удается улучшить его термическую стабильность и механические свойства. Достигается это благодаря объединению комплекса свойств органического (легкость, гибкость, пластичность) и неорганического (прочность, теплостойкость, химическая устойчивость) компонентов.

Учитывая вышеприведенные свойства наноглины общей химической формулы

(отношение n:p 1,0-1,1), авторы провели исследования о возможности применения ее в совокупности с нефтяным церезином с температурой каплепадения 65-70°C, однозамещенным амидом фракции СЖК C17-C21 трибората моноэтаноламина и водой в составе для защитного покрытия различных материалов.

Для обоснования количественного состава были приготовлены опытные образцы с различной концентрацией компонентов (табл. 2).

Состав защитного покрытия готовят на технологической установке, блок-схема которой представлена в описании прототипа, следующим образом. В обогреваемую мешалку загружают в заданном количестве однозамещенные амиды фракции СЖК C17-C21 трибората моноэтаноламина, наноглины общей химической формулы

(отношение n:p 1,0-1,1), воду и при перемешивании доводят температуру смеси до 75-80°C, после чего в мешалку вводят заданные количества расплава нефтяного церезина с температурой каплепадения не выше 65-70°C. Поддерживая температуру смеси всех компонентов на уровне 75-80°C, производят перемешивание шестеренчатым насосом до получения однородной и нерасслаиваемой эмульсии. Для стабилизации свойств эмульсии при хранении ее подвергают гомогенизации путем прокачивания по замкнутому кругу плунжерным насосом через гомогенизирующее устройство (дроссельную заслонку) под давлением 10-15 МПа, затем собирают в сборник готовой продукции. Состав защитного покрытия готов к применению. Срок хранения состава составляет не менее 1 года при температурах от 5 до 25°C.

Испытания проводились на пластинах из стали марки Ст3. Опытные образцы наносились механическим способом (кистью или краскопультом) на предварительно очищенные и обезжиренные поверхности пластин при толщине покрытия 15±1 мкм. Время образования защитного покрытия 25±5 мин при температуре 20±2°C.

Полученные на основе опытных составов (табл. 2) защитные покрытия прошли ускоренные лабораторные испытания по 11 - ГОСТ 9.054-75 «Консервационные масла, смазки и ингибированные пленкообразующие составы. Методы ускоренных испытаний защитной способности». Результаты представлены в табл. 3.

Адгезия определялась по 12 - ГОСТ Р 54563-2011 «Материалы лакокрасочные. Определение адгезии методом решетчатого надреза». Результаты представлены в табл. 3.

Испытания на стойкость к воздействию плесневых грибов выполнялось по 13 - ГОСТ 9.049-91 «Единая система защиты от коррозии и старения. Материалы полимерные и их компоненты. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов. Метод 1». Результаты представлены в табл. 4.

Барьерные свойства опытных составов определялись по 15 - ISO 15105-1:2001 «Пластмассы. Пленка и листы. Определение скорости проникновения газов. Часть 1. Метод определения по перепаду давления». Результаты представлены в табл. 5.

Водопоглощение опытных образцов определялось по 15 - ГОСТ 21513-76 «Материалы лакокрасочные. Метод определения водо- и влагопоглощения лакокрасочной пленки». Результаты представлены в табл. 5.

Анализ результатов, представленных в табл. 3, показывает, что защитные свойства по отношению к Ст. 3, % корр. по поражению поверхности в морской воде после 250 ч, в камере соляного тумана после 100 ч, в камере искусственной погоды ИП - 1,3 после 500 ч не хуже, чем у прототипа. Однако величина адгезии к защищаемой поверхности заявляемого состава защитного покрытия лучше, чем аналогичная характеристика прототипа.

Анализ результатов, представленных в табл. 4, показывает, что заявляемый материал и прототип не являются питательной средой для микроскопических плесневых грибов. Только для прототипа и образца №1 наблюдается незначительное развитие грибов Chaetomiun globosum Kunze и Paecilomyces varioti Bainier, однако, при содержании компонентов в образце №1 меньше оптимального.

Анализ результатов, представленных в табл. 5, показывает, что заявленный состав защитного покрытия по газопроницаемости и водопоглощению существенно превосходит прототип, даже при неоптимальном соотношении компонентов.

Результаты испытаний, приведенные в табл. 3-5, показывают, что все образцы заявляемого состава превосходят прототип по газопроницаемости и водопоглощению, обладают высокой стойкостью к воздействию плесневых грибов, лучшей адгезией к защищаемой поверхности.

Заявляемое техническое решение соответствует не только критерию «новизна» (отличие от прототипа), но и отличается по критерию «изобретательский уровень», так как авторы не имеют сведений о заявляемой совокупности использования примененных компонентов в составе защитного покрытия на основе водно-восковой дисперсии. Компоненты, примененные в заявляемом составе, производятся в промышленных масштабах на территории России, а наноглины являются инновационным продуктом, производство которого запущено впервые и востребованность которого с каждым годом будет только увеличиваться благодаря уникальному комплексу их свойств. Все это вместе взятое способствует процессу импортозамещения.

Применение изобретения позволит увеличить срок службы полимерных изделий, неокрашенных поверхностей дерева, металла, окрашенных изделий деревообработки и машиностроения в условиях транспортирования и хранения во всех климатических районах Российской Федерации. Высокие противомикробные и барьерные свойства заявленного состава позволят существенно увеличить срок службы вышеприведенных изделий в районах с тропическим климатом.

Похожие патенты RU2613770C1

название год авторы номер документа
СОСТАВ ДЛЯ ЗАЩИТНОГО ПОКРЫТИЯ 1999
  • Рыбаков Ю.Н.
  • Паталах И.И.
  • Федоров А.В.
  • Перлов А.Н.
  • Харламова О.Д.
RU2156268C1
Способ получения водно-восковой эмульсии для защиты металлоизделий от коррозии 2022
  • Гайдар Сергей Михайлович
  • Коноплев Виталий Евгеньевич
  • Лапсарь Оксана Михайловна
  • Балькова Татьяна Ивановна
  • Пикина Анна Михайловна
  • Петровский Дмитрий Иванович
RU2784432C1
Состав для защитного покрытия 2022
  • Гайдар Сергей Михайлович
  • Коноплев Виталий Евгеньевич
  • Лапсарь Оксана Михайловна
  • Балькова Татьяна Ивановна
  • Пикина Анна Михайловна
  • Петровский Дмитрий Иванович
RU2783127C1
ЗАЩИТНЫЙ СМАЗОЧНЫЙ МАТЕРИАЛ 1998
  • Пятницын Г.И.
  • Афонькин А.Ф.
  • Пеньковская Г.В.
  • Ткачук А.В.
  • Бучнева Е.В.
  • Воронова Л.А.
  • Кравченко В.И.
  • Бодокия А.П.
RU2129144C1
КОМПОЗИЦИЯ ДЛЯ ЗАЩИТНОГО ПОКРЫТИЯ БЕТОНА 1992
  • Топильский Г.В.
  • Рахманов В.А.
  • Полтавцев С.И.
  • Коряжкина М.Н.
  • Карпешина С.Г.
RU2083520C1
ЗАЩИТНЫЙ СМАЗОЧНЫЙ СОСТАВ 1995
  • Карпов В.А.
  • Самохин Н.Л.
  • Шаринова Л.М.
  • Михайлова О.Л.
  • Овчинников В.П.
  • Шехтер Ю.Н.
  • Пелах Р.Л.
  • Корох Н.И.
RU2114160C1
ЗАЩИТНЫЙ СМАЗОЧНЫЙ МАТЕРИАЛ 2004
  • Котелевец Н.А.
  • Громов М.С.
  • Шапкин В.С.
  • Миркин И.И.
  • Семенов С.А.
  • Богданова Т.И.
  • Шкаруба Е.В.
  • Литвинова Н.А.
  • Соляр И.З.
  • Гандельман С.Г.
  • Кутуева Г.И.
RU2260618C1
Состав для хранения луковиц чеснока 2016
  • Красавцев Борис Евгеньевич
  • Александрова Эльвира Александровна
  • Александров Борис Леонтьевич
  • Родченко Мила Борисовна
  • Родченко Григорий Тимурович
RU2634276C1
ИНГИБИТОР ПАРАФИНОВЫХ ОТЛОЖЕНИЙ 2006
  • Агаев Славик Гамид Оглы
  • Землянский Евгений Олегович
  • Халин Анатолий Николаевич
  • Мозырев Андрей Геннадьевич
  • Гребнев Александр Николаевич
RU2326153C1
ЗАЩИТНЫЙ СМАЗОЧНЫЙ МАТЕРИАЛ 2011
  • Богданова Татьяна Ивановна
  • Литвинова Наталия Алексеевна
  • Соляр Изабелла Захаровна
  • Булатников Владимир Валентинович
  • Котелевец Нина Алексеевна
  • Громов Михаил Степанович
  • Шапкин Василий Сергеевич
  • Миркин Илья Исакович
  • Телепень Алексей Николаевич
  • Колыбельский Дмитрий Сергеевич
  • Порфирьев Ярослав Владимирович
RU2454454C1

Реферат патента 2017 года Состав для защитного покрытия

Изобретение относится к составам для нанесения покрытий, снимающихся одним слоем, в частности к защитным составам от атмосферного воздействия, старения, биоповреждений полимерных изделий, неокрашенных поверхностей дерева, металла, окрашенных декоративных покрытий изделий деревообработки и машиностроения в условиях транспортирования, и может быть использовано во всех отраслях для консервации техники при хранении на открытых площадках. Описан состав для защитного покрытия, содержащий нефтяной церезин с заданной температурой каплепадения, однозамещенные амиды фракции синтетических жирных кислот (СЖК) С1721 трибората моноэтаноламина и воду, отличающийся тем, что дополнительно содержит наноглины общей химической формулы с отношением n:p 1,0-1,1, а нефтяной церезин - с температурой каплепадения не выше 70°С при следующем соотношении компонентов, мас.%: нефтяной церезин с температурой каплепадения не выше 70°С 15,0-25,0, однозамещенные амиды фракции СЖК С1721 трибората моноэтаноламина 2,5-9,5, наноглины общей химической формулы с отношением n:p 1,0-1,1 1,0-2,0, вода - остальное. Технический результат: повышение эффективности защитных свойств покрытия за счет улучшения адгезии материала покрытия к защитным поверхностям, биоцидных свойств к различным типам плесневых грибов и барьерных свойств материала защитного покрытия. 5 табл.

Формула изобретения RU 2 613 770 C1

Состав для защитного покрытия, содержащий нефтяной церезин с заданной температурой каплепадения, однозамещенные амиды фракции синтетических жирных кислот СЖК С1721 трибората моноэтаноламина и воду, отличающийся тем, что дополнительно содержит наноглины общей химической формулы с отношением n:p 1,0-1,1, а нефтяной церезин - с температурой каплепадения не выше 70°С при следующем соотношении компонентов, мас.%:

нефтяной церезин с температурой каплепадения не выше 70°С 15,0-25,0 однозамещенные амиды фракции СЖК С1721 трибората моноэтаноламина 2,5-9,5 наноглины общей химической формулы {Mg3[Si4O10][OH]2}⋅p{[Al,Fe•••]2[Si4O10][OH]2}⋅nH2O с отношением n:p 1,0-1,1 1,0-2,0 вода остальное

Документы, цитированные в отчете о поиске Патент 2017 года RU2613770C1

СОСТАВ ДЛЯ ЗАЩИТНОГО ПОКРЫТИЯ 1999
  • Рыбаков Ю.Н.
  • Паталах И.И.
  • Федоров А.В.
  • Перлов А.Н.
  • Харламова О.Д.
RU2156268C1
RU 2052482 C1, 20.01996
КОМПОЗИЦИЯ ДЛЯ ЗАЩИТНОГО ПОКРЫТИЯ БЕТОНА 1992
  • Топильский Г.В.
  • Рахманов В.А.
  • Полтавцев С.И.
  • Коряжкина М.Н.
  • Карпешина С.Г.
RU2083520C1
ВЛАГОЗАЩИТНОЕ ПАРАФИНОВОЕ ПОКРЫТИЕ ПЛОДОВЫХ И ВИНОГРАДНЫХ ЧЕРЕНКОВ 1998
  • Александрова Э.А.
  • Дорошенко Т.Н.
  • Гергаулова Р.М.
RU2155480C2

RU 2 613 770 C1

Авторы

Думболов Джамиль Умярович

Романникова Надежда Константиновна

Середа Владимир Васильевич

Харламова Ольга Дмитриевна

Щербин Сергей Николаевич

Даты

2017-03-21Публикация

2015-12-07Подача