Способ получения углеродных нанотрубок в сверхзвуковом потоке и устройство для его осуществления Российский патент 2017 года по МПК C01B32/16 B82B3/00 B82Y40/00 

Описание патента на изобретение RU2614966C2

Изобретение относится к фундаментальным наукам - физике, химии, биофизике, медицине, биологии, а также к промышленным технологиям в областях электроники, оптоэлектроники.

Известна установка для получения углеродных нанотрубок по патенту US 2002127170 A1. К ее недостаткам следует отнести низкую эффективность получения углеродных нанотрубок при испарении поверхности углеродных образцов из графита в замкнутом объеме.

Известен способ получения углеродных нанотрубок путем термического разложения углеводородов на слое твердотельного катализатора, отделенного от реакторной зоны внутренней шлюзовой камерой, продуваемой защитным инертным газом, откуда получаемые углеродные нанотрубки попадают во внешнюю шлюзовую камеру. Данный способ описан в патенте US 2012269696 A1.

Преимуществом такого способа получения углеродных нанотрубок является защищенность поверхности катализатора, длительность времени работы.

Недостатки и ограничения, связанные с применением способа, заключаются в большом количестве используемого катализатора и большой вероятности его отравления в ходе длительной работы реактора, что делает данный способ непригодным для длительных циклов синтеза углеродных нанотрубок.

В качестве прототипа выбрано изобретение «Способ получения фуллеренсодержащей сажи» (патент РФ №2423318 от 10.07.2011). Известный способ в вышеуказанном патенте основан на нагревании и испарении углерода и/или углеродосодержащих образцов в зоне индукционного нагрева в атмосфере инертного газа при пониженном давлении в замкнутом объеме и осаждении испарившихся компонентов в виде фуллереносодержащей сажи на холодной поверхности в накопительной емкости.

Преимуществом такого способа получения углеродных нанотрубок является отсутствие ограничений по вкладываемым мощностям и длительность циклов синтеза фуллереносодержащей сажи.

Недостатком способа является низкая производительность получения углеродных нанотрубок.

Целью изобретения является повышение производительности получения углеродных нанотрубок без снижения качества получаемого продукта.

Техническим результатом предлагаемого изобретения является увеличение содержания углеродных нанотрубок в саже без снижения качества получаемого из нее продукта.

Достижение технического результата в способе получения углеродных нанотрубок осуществляется за счет нагревания и испарения углерода и/или углеродосодержащих образцов в зоне индукционного нагрева в атмосфере инертного газа при пониженном давлении в замкнутом объеме и осаждении испарившихся компонентов в виде углеродных нанотрубок на холодной поверхности в накопительной емкости, герметично соединенной с системой нагревания и системой отвода инертного газа. При этом пары углерода и инертного газа дополнительно смешиваются с подогретым водородом, а образованная смесь затем подается на выход соплового блока, содержащего сопло Лаваля с числами Маха M=1,5÷5. Продукты индукционного нагрева направляют на охлаждаемый сажеуловитель, размещенный в автономной накопительной емкости, связанной с замкнутым объемом.

Фиг. 1 иллюстрирует устройство для осуществления способа получения углеродных нанотрубок.

Разрядная камера 1 системы нагревания 2, имеющая цилиндрическую форму, помещена внутри радиопрозрачной трубки 3, находящейся в индукторе 4, выполненном в виде спирали, соединенном с высокочастотным генератором 5. Инертный газ подается с торца кварцевой трубки из системы подачи 6 через расходомер (поплавковый ротаметр) 7, последовательно соединенный с многозаходовым смесителем-газоформирователем 8. Накопительная емкость 9, где расположен охлаждаемый сажеуловитель 10, снабженный системой охлаждения 11, находится между радиопрозрачной трубкой 3 и системой отвода газа 12. Система отвода газа 12, система подачи газа 6, радиопрозрачная трубка 3 и накопительная емкость 9 герметично связаны между собой. Между радиопрозрачной трубкой 3 и накопительной емкостью 9 устанавливается сопловой блок, сопловой блок, содержащий сопло Лаваля 13 с числами Маха M=1,5÷5. Программно-коммутирующее устройство (ПКУ) 14 дополнительно подключает к входу многозаходового смесителя-газоформирователя 8 блок 16 для хранения и подачи порошка металлического катализатора. Для реализации режима производства углеродных нанотрубок из углерода и/или углеродосодержащих веществ ПКУ 14 подключает блок хранения и подачи мелкодисперсного углерода и/или углеродосодержащих веществ 15, блок 16 для хранения и подачи порошка-катализатора, источник водорода 18 и устройство для его подогрева 17 к моногозаходовому вихревому смесителю-газоформирователю 8 с целью последующего формирования смеси углерода и инертного газа в реакционной зоне нагревания в радиопрозрачной трубке 3 с использованием энергии высокочастотного индуктора 4, выполненного в виде спирали, витки которой размещены с зазором по отношению к радиопрозрачной трубке 3, и соединенного с высокочастотным генератором 5. Подачу электрического напряжения на высокочастотный генератор 5 и включение системы подачи инертного газа 7 и его отвода 12 осуществляют с использованием ПКУ 14, который включает импульсный лазер 19, луч 20 которого через кварцевую стенку радиопрозрачной трубки 3 направлен в зоне нагревания индуктора 4 и инициирует разряд в технологической смеси.

Функционирование устройства осуществления способа получения углеродных нанотрубок согласно чертежу установки для реализации данного способа и его вариантов происходит следующим образом.

Для запуска технологического процесса ПКУ 14 включает импульсный лазер 19, луч 20 которого через кварцевую стенку радиопрозрачной трубки 3 направлен в технологическую смесь в зоне нагревания индуктора 4 и инициирует разряд в технологической смеси. ПКУ 14 обеспечивает реализацию различных вариантов способа получения углеродных нанотрубок в устройстве для их осуществления. При этом инертный газ из системы подачи 6 через регулируемый расходомер (поплавковый ротаметр) 7 поступает в смеситель-газоформирователь 8, имеющий винтовую нарезку и создающий закрученный поток. За счет начальной окружной закрутки подаваемого через газоформирователь 8 газа в радиопрозрачной трубке 3 разряд отжимается от стенок камеры и возникает сложная газодинамическая картина течения с рециркуляционной зоной.

Охлаждение сажеуловителя 10 осуществляется с помощью змеевика с проточной водой или другого жидкого охладителя или с помощью термоэлектрического преобразователя. Сажеуловитель 10 располагается вне системы нагрева 2 и может перемещаться внутри накопительной емкости 9.

Для реализации режима производства углеродных нанотрубок из угольного порошка или углеродсодержащих веществ с помощью ПКУ 14 включают импульсный лазер 19 и направляют луч лазера 20 через кварцевую стенку радиопрозрачной трубки 3 с фокусировкой луча на поверхности металлического стержня 21, выполненного из материала-катализатора в зоне нагревания индуктора 4. При производстве нанотрубок (HT) между радиопрозрачной трубкой 3 и накопительной емкостью 9 устанавливается сопловой блок, содержащий сопло Лаваля 13 с числами Маха M=1,5÷5.

При слишком большом притоке углеродных атомов и ограниченном количестве атомов катализатора более вероятно производство углеродных нанотрубок. Необходимым условием сборки HT является достаточная разреженность углеродного пара. При этом должен быть разрежен и каталитический пар. Во избежание забивания и блокирования поступления углеродных атомов и фиксации плоских кольцевых кластеров без роста HT. Поэтому оптимальным для производства HT является реализация режима формирования HT в дальней окрестности испаряемой лазером металлической мишени. Таким образом, рост одностенных HT из колец происходит лишь в присутствии металлического катализатора под воздействием лазерного луча 20 на металлическую мишень-катализатор 21.

Предлагаемый способ подтвердил свою осуществимость и эффективность при получении углеродных HT путем сублимации углерода и/или углеродосодержащих веществ в плазме аргона с последующей конденсацией паров углерода на охлаждаемом медном сажеуловителе. Эксперименты проводились при относительно небольших энергозатратах N=100 кВт и расходе аргона G=10 г/с.

После окончания эксперимента, который длился до полного расходования порошка в емкости (~20 с), производилась разгерметизация накопительной емкости 9. Торцевая часть медного сажеуловителя была покрыта равномерным довольно толстым слоем сажи.

Значительно более тонкий слой сажи оседал на стенках охлаждаемого водой соплового блока, содержащего сопло Лаваля с числами Маха M=1,5÷5. На стенках кварцевой радиопрозрачной трубки 3 осаждения сажи, по крайней мере, в эксперименте малой продолжительности практически не происходит. Сажа торцевой части легко счищается. Даже визуально счищенная с поверхности меди сажа отличается от исходного порошка.

Предложенное комплексное техническое решение имеет существенные отличия и преимущества по сравнению с рассмотренными прототипами, заключающиеся в использовании соплового блока, содержащего сопло Лаваля с числами Маха от 1,5 до 5, и добавлении в исходную смесь подогретого водорода, что значительно увеличивает содержание УНТ в получаемой саже.

Похожие патенты RU2614966C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ФУЛЛЕРЕНОСОДЕРЖАЩЕЙ САЖИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Залогин Георгий Николаевич
  • Юлдашев Эдуард Махмутович
  • Власов Вячеслав Иванович
  • Красильников Артур Владимирович
  • Дедюков Лаврентий Алексеевич
RU2423318C2
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ФУЛЛЕРЕНСОДЕРЖАЩЕЙ САЖИ 2004
  • Власов В.И.
  • Дедюков Л.А.
  • Залогин Г.Н.
  • Кнотько В.Б.
  • Парфенов В.Н.
RU2266866C2
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК 2010
  • Носачёв Леонид Васильевич
  • Подлубный Виктор Владимирович
  • Хасанова Надежда Леонидовна
  • Цыбулько Денис Николаевич
  • Шаныгин Алексей Николаевич
RU2446095C2
СПОСОБ ПОЛУЧЕНИЯ САЖИ, СОДЕРЖАЩЕЙ ФУЛЛЕРЕНЫ И НАНОТРУБКИ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Тахаутдинов Рустем Шафагатович
  • Галеев Ильгиз Гатуфович
  • Тимеркаев Борис Ахунович
  • Гисматуллин Наиль Камилевич
  • Зиганшин Дамир Ильгисович
  • Мухамедзянов Рустем Бельгиорович
RU2511384C2
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ И СТРУКТУР ИЗ УГЛЕВОДОРОДНОГО ГАЗА, ВКЛЮЧАЯ ПОПУТНЫЙ НЕФТЯНОЙ ГАЗ 2009
  • Мальцев Василий Анатольевич
  • Нерушев Олег Алексеевич
  • Новопашин Сергей Андреевич
RU2425795C2
СПОСОБ ПОЛУЧЕНИЯ ВОЛОКНИСТЫХ УГЛЕРОДНЫХ СТРУКТУР КАТАЛИТИЧЕСКИМ ПИРОЛИЗОМ 2007
  • Ткачев Алексей Григорьевич
  • Туголуков Евгений Николаевич
  • Рухов Артем Викторович
RU2353718C1
СПОСОБ СИНТЕЗА УГЛЕРОДНЫХ НАНОТРУБОК 2009
  • Ткачев Алексей Григорьевич
  • Мищенко Сергей Владимирович
  • Артемов Владимир Николаевич
  • Ткачев Максим Алексеевич
RU2401798C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДСОДЕРЖАЩИХ НАНОТРУБОК 2010
  • Бардаханов Сергей Прокопьевич
RU2447019C2
Способ получения углеродных нанотрубок 2021
  • Власов Олег Анатольевич
  • Мечев Валерий Валентинович
  • Симонова Наталья Сергеевна
  • Подшибякина Елена Юрьевна
  • Гришина Екатерина Александровна
RU2798835C2
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК И УСТРОЙСТВО ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Абрамов Геннадий Владимирович
  • Аксенов Сергей Николаевич
  • Ершов Сергей Владимирович
  • Попов Геннадий Васильевич
RU2337061C1

Иллюстрации к изобретению RU 2 614 966 C2

Реферат патента 2017 года Способ получения углеродных нанотрубок в сверхзвуковом потоке и устройство для его осуществления

Изобретение относится к физике, химии, биофизике, медицине, биологии, электронике, оптоэлектронике. В смесителе-газоформирователе 8 готовят смесь путём подачи в него углерода и/или углеродсодержащих веществ из блока 15, порошка катализатора из блока 16, инертного газа из системы 6 через расходомер 7 и подогретого в устройстве 17 водорода из источника 18. Подключение указанных элементов осуществляют при помощи программно-коммутирующего устройства (ПКУ) 14. Полученную смесь подают в систему нагревания 2, включающую разрядную камеру 1, помещённую внутрь радиопрозрачной трубки 3, находящейся в индукторе 4, выполненном в виде спирали, соединённом с высокочастотным генератором 5. ПКУ 14 включает импульсный лазер 19, луч 20 которого, сфокусированный на поверхности металлического стержня 21, инициирует разряд в полученной смеси. Продукты индукционного нагрева направляют в накопительную емкость 9 через сопловой блок, содержащий сопло Лаваля 13 с числами Маха 1,5÷5. В накопительной ёмкости 9, герметично соединенной с системой нагревания 2 и системой отвода инертного газа 12, размещён охлаждаемый с помощью системы 11 сажеуловитель 10. Изобретение позволяет значительно увеличить содержание углеродных нанотрубок в полученной саже. 2 н.п. ф-лы, 1 ил.

Формула изобретения RU 2 614 966 C2

1. Способ получения углеродных нанотрубок, заключающийся в индукционном нагреве смеси углерода и/или углеродосодержащих веществ и инертного газа в замкнутом объеме при пониженном давлении и обеспечении осаждения испарившихся компонентов в виде углеродных нанотрубок на охлажденной поверхности накопительной емкости, герметично соединенной с системой нагревания и системой отвода инертного газа, отличающийся тем, что в образованную смесь углерода и/или углеродосодержащих веществ и инертного газа добавляют подогретый водород, а продукты индукционного нагрева направляют в накопительную емкость через сопло Лаваля с числами Маха М=1,5÷5.

2. Устройство для осуществления способа получения углеродных нанотрубок, содержащее систему нагревания углерода и/или углеродосодержащих веществ высокочастотным электромагнитным полем высокочастотного плазмотрона в замкнутом объеме внутри радиопрозрачной трубки, герметично связанную с системой подачи инертного газа, газоформирователем, сопловым блоком, накопительной емкостью с охлаждаемым сажеуловителем и системой отвода инертного газа, отличающееся тем, что сопловой блок содержит сопло Лаваля с числами Маха М=1,5÷5, а к газоформирователю подключен источник водорода с устройством для его подогрева.

Документы, цитированные в отчете о поиске Патент 2017 года RU2614966C2

СПОСОБ ПОЛУЧЕНИЯ ФУЛЛЕРЕНОСОДЕРЖАЩЕЙ САЖИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Залогин Георгий Николаевич
  • Юлдашев Эдуард Махмутович
  • Власов Вячеслав Иванович
  • Красильников Артур Владимирович
  • Дедюков Лаврентий Алексеевич
RU2423318C2
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ФУЛЛЕРЕНСОДЕРЖАЩЕЙ САЖИ 2004
  • Власов В.И.
  • Дедюков Л.А.
  • Залогин Г.Н.
  • Кнотько В.Б.
  • Парфенов В.Н.
RU2266866C2
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1

RU 2 614 966 C2

Авторы

Дедюков Лаврентий Алексеевич

Залогин Георгий Николаевич

Красильников Артур Владимирович

Красильников Сергей Валерьевич

Рудин Николай Федорович

Даты

2017-03-31Публикация

2015-09-17Подача