Изобретение относится к нанотехнологиям, в частности к технологии получения углеродных нанотрубок для водородной энергетики, изготовления композиционных материалов и функциональных покрытий.
Известные к настоящему времени устройства для получения углеродных нанотрубок, как правило, реализуют один из способов дезинтеграции углеродсодержащего вещества с последующим синтезом аллотропных структур углерода в неравновесных процессах их самосборки из углеродных кластеров в инертной среде в присутствии катализатора или без него (см., например, Dillon A.C., Parilla P.A., Alleman J.L., Perkins J.D., Heben M.J. Controlling SMNT diameters with variation in laser pulse power. Chem. Phys. Lett. 2000.316.13; Endo M., Takahashi К., Kroto H.W., and Sarkar A. Pyrolytic carbon NT from vapor-grown carbon fibers. Carbon. 1995.33.7.873; патент RU N 2218299, МПК B82B 3/00, C23C 14/35, 10.12.2003; патент RU N 2311338, МПК B82B 3/00, 27.11.2007; патент RU N 2364569, МПК B82B 3/00, C23C 16/26, 20.08.2009; патент RU N 2294892, МПК B82B 3/00, 10.03.2007).
Известна установка для получения фуллеренсодержащей сажи (см. патент RU N 2266866, МПК C01B 31/02, 27.12.2005), включающая герметичную камеру, углеродсодержащее вещество в виде графитового стержня или трубки, высокочастотный индуктор, соединенный с высокочастотным генератором, системы нагрева и отвода инертного газа и сажеуловитель, расположенный вне системы нагрева и снабженный системой охлаждения.
Недостатком известной установки является невысокая энергоэффективность.
Известна установка для получения фуллеренсодержащей сажи (см. патент RU N 2341452, МПК C01B 31/02, B82B 3/00, 20.12.2008), включающая охлаждаемую герметичную камеру, углеродсодержащее вещество в виде графитовых стержней анода и вращающегося диска катода, расположенного между стержнями анода, системы подачи углеродсодержащего вещества, инертного газа и электропитания, а также накопитель сажи.
Недостатком известной установки является необходимость проведения циклической выгрузки сажи из саженакопителя с развакуумированием камеры.
Известны способы получения нанодисперсного углерода (варианты) и устройство для их реализации (см. патент RU N 2344074, МПК C01B 31/00, B82B 3/00, 20.01.2009), включающее подготовку смеси с отрицательным кислородным балансом, состоящей из углеродсодержащего вещества на основе ацетилена и/или керосина и окислителя, ввод смеси в полузамкнутую детонационную камеру двумя потоками с различным коэффициентом избытка окислителя через пористую стенку и через кольцевое сверхзвуковое сопло, ее детонацию с частотой 100-20000 Гц и охлаждение продуктов детонации со скоростью 2·105-106К/с.
Недостатком известного изобретения является высокое энергопотребление.
Известен способ получения углеродных нанотрубок и устройство для его осуществления (см. патент RU N 2337061, МПК C01B 31/02, B82B 3/00, 27.10.2008), включающее камеру с инертным газом, углеродсодержащие анод и катод с системой электропитания, нагреватель в виде кольцевого индуктора токов высокой частоты и устройство охлаждения инертного газа.
Недостатком известного устройства является низкое качество получаемых многостенных углеродных нанотрубок.
Известно устройство для получения углеродных нанотрубок (см. патент RU N 2352523, МПК C01B 32/02, B82B 3/00, 20.04.2009), включающее камеру с нагревателем и системой подачи в нее углеводорода и водорода, устройство ввода в камеру контейнеров с катализатором и систему контроля параметров, определяющих условия и режим синтеза углеродных нанотрубок.
Недостатком известного устройства является малый ресурс и ненадежность работы механической системы дозирования катализатора в условиях повышенной температуры реакционной камеры.
Наиболее близким из известных технических решений является устройство получения коротких углеродных нанотрубок (см. патент RU N 2309118, МПК C01B 31/02, B82B 3/00, B01J 19/08, 20/20, 21/18, 10.04.2005), включающее герметичную охлаждаемую камеру, углеродсодержащее вещество и системы подачи углеродсодержащего вещества, инертного газа, электроэнергии, отвода продуктов синтеза, нагрева и охлаждения реакционной зоны и контроля параметров, определяющих условия и режим модификации углеродсодержащего вещества.
Недостатком известного устройства является циклический характер выгрузки из камеры конечного продукта и удаления его с поверхности электродов для дальнейшей переработки.
Задачей данного изобретения является повышение производительности при получении углеродных нанотрубок без применения катализаторов.
Технический результат, получаемый при осуществлении изобретения, заключается в повышении качества и стабильности характеристик производимых в промышленных масштабах природных углеродных нанотрубок без применения катализаторов.
Решение задачи и технический результат достигаются тем, что в установке для получения углеродных нанотрубок, содержащей герметичную камеру, углеродсодержащее вещество, нагреватель и системы подачи углеродсодержащего вещества и инертного газа, отвода конечного продукта и контроля параметров, определяющих условия и режим модификации углеродсодержащего вещества, в качестве углеродсодержащего вещества выбран антрацит, коксующийся уголь, шунгит, кокс, древесный уголь или их смесь, дополнительно включена форкамера, на входе герметичной камеры установлены сопла, направленные навстречу друг другу, соединенные с форкамерой и формирующие сталкивающиеся струи двухфазной смеси инертного газа и измельченного в порошок углеродсодержащего вещества, а на выходе герметичная камера имеет сепаратор, фильтр, коллектор твердых частиц и компрессор, выход которого через нагреватель связан с форкамерой, а сепаратор и фильтр соединены с коллектором твердых частиц и компрессором. Сепаратор имеет блок перфорированных мембран с диаметром отверстий в диапазоне от 40 до 500 нм, а коллектор твердых частиц соединен с ультрацентрифугой системы разделения твердых частиц по размерам и фракциям.
Принципиальная схема установки для получения углеродных нанотрубок показана на фигуре.
Установка для получения углеродных нанотрубок содержит мельницу 1 для предварительного измельчения углеродсодержащего вещества, форкамеру 2, компрессор 3, подогреватель 4 и сопла 5, установленные на входе герметичной камеры 6 и направленные навстречу друг другу для формирования сталкивающихся струй. На выходе герметичная камера 6 имеет сепаратор 7 и фильтр 8, соединенные с коллектором твердых частиц 9 и компрессором 3, выход которого через нагреватель 4 связан с форкамерой 2. В сепараторе 7 установлен блок перфорированных мембран 10 с диаметром отверстий от 40 до 500 нм, а коллектор 9 твердых частиц соединен с ультрацентрифугой 11 системы 12 разделения твердых частиц по размерам и фракциям.
Работа установки для получения углеродных нанотрубок осуществляется следующим образом.
В мельнице 1 углеродсодержащее вещество предварительно измельчают в порошок с размером частиц порядка 1000 нм, направляют его в форкамеру 2, смешивают с инертным газом, который от компрессора 3, через подогреватель 4 вводят тангенциально в форкамеру 2. Из форкамеры 2 двухфазная смесь через сопла 5 поступает в герметичную камеру 6. Сопла 5 направлены навстречу друг другу и формируют высокоскоростные сталкивающиеся струи, в которых твердые частицы при соударении на огромной скорости дробятся, освобождая от породы высокопрочные природные углеродные нанотрубки. Двухфазный поток, сформировавшийся в герметичной камере 6 после взаимодействия высокоскоростных струй, направляют в сепаратор 7 и фильтр 8, соединенные с коллектором твердых частиц 9 и компрессором 3. В сепараторе 7 установлен блок перфорированных мембран 10 с диаметром отверстий от 40 до 500 нм. Твердые частицы из коллектора 9 ультрацентрифугой 11 системы 12 разделяются по размерам и фракциям.
Установка обеспечивает замкнутый цикл работы и экологическую безопасность промышленного производства природных углеродных нанотрубок. Заявленное изобретение положено в основу инновационного проекта на открытый конкурс Роснауки на право заключения с Федеральным агентством по науке и инновациям государственного контракта на проведение НИР в области нанотехнологий и наноматериалов (лот 2, шифр 2010-1.1-207-061).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК | 2010 |
|
RU2442747C2 |
СПОСОБ НЕПРЕРЫВНОГО ПОЛУЧЕНИЯ ГРАФЕНОВ | 2014 |
|
RU2556926C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2011 |
|
RU2489350C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО УГЛЕРОДА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2009 |
|
RU2408532C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОД-МЕТАЛЛИЧЕСКОГО МАТЕРИАЛА КАТАЛИТИЧЕСКИМ ПИРОЛИЗОМ ЭТАНОЛА | 2012 |
|
RU2516548C2 |
СПОСОБ ПОЛУЧЕНИЯ ВОЛОКОН В ЭЛЕКТРИЧЕСКОМ ОДНОРОДНОМ ПОЛЕ | 2011 |
|
RU2478562C1 |
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ И СТРУКТУР ИЗ УГЛЕВОДОРОДНОГО ГАЗА, ВКЛЮЧАЯ ПОПУТНЫЙ НЕФТЯНОЙ ГАЗ | 2009 |
|
RU2425795C2 |
СПОСОБ СИНТЕЗА УГЛЕРОДНЫХ НАНОТРУБОК И УСТРОЙСТВО ЕГО ОСУЩЕСТВЛЕНИЯ | 2013 |
|
RU2559481C2 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ ХРОМАТОГРАФИЧЕСКОГО РАЗДЕЛЕНИЯ ФУЛЛЕРЕНОВ | 2013 |
|
RU2546147C1 |
Способ получения мезопористых углеродных материалов | 2020 |
|
RU2755122C1 |
Изобретение относится к нанотехнологии. Получают углеродные нанотрубки. В качестве углеродсодержащего вещества используют антрацит, коксующийся уголь, шунгит, кокс, древесный уголь или их смесь. Углеродсодержащее вещество измельчают в порошок в мельнице 1. Затем полученный порошок смешивают в форкамере 2 с потоком инертного газа. Полученную двухфазную смесь пропускают через сопла 5. Сформировавшийся после взаимодействия сталкивающихся струй двухфазный поток сепарируют в сепараторе 7, фильтруют в фильтре 8. Собранные в коллекторе 9 углеродные нанотрубки классифицируют по размерам и фракциям. Изобретение позволяет повысить качество углеродных нанотрубок. 1 з.п. ф-лы, 1 ил.
1. Установка для получения углеродных нанотрубок, включающая герметичную камеру, углеродсодержащее вещество, нагреватель и системы подачи углеродсодержащего вещества и инертного газа и отвода конечного продукта, отличающаяся тем, что в качестве углеродсодержащего вещества выбран антрацит, коксующийся уголь, шунгит, кокс, древесный уголь или их смесь, содержит форкамеру, на входе герметичной камеры установлены сопла, направленные навстречу друг другу, соединенные с форкамерой и формирующие сталкивающиеся струи двухфазной смеси инертного газа и измельченного в порошок углеродсодержащего вещества, на выходе герметичная камера имеет сепаратор, фильтр, коллектор твердых частиц и компрессор, выход которого через нагреватель связан с форкамерой, а сепаратор и фильтр соединены с коллектором твердых частиц и компрессором.
2. Установка для получения углеродных нанотрубок по п.1, отличающаяся тем, что в сепараторе установлен блок перфорированных мембран с диаметром отверстий от 40 до 500 нм.
Реактор для получения сажи | 1969 |
|
SU488839A1 |
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ФУЛЛЕРЕНСОДЕРЖАЩЕЙ САЖИ | 2004 |
|
RU2266866C2 |
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ФУЛЛЕРЕНСОДЕРЖАЩЕЙ САЖИ | 2007 |
|
RU2341452C1 |
СПОСОБЫ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО УГЛЕРОДА (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ИХ РЕАЛИЗАЦИИ | 2007 |
|
RU2344074C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК И УСТРОЙСТВО ЕГО ОСУЩЕСТВЛЕНИЯ | 2007 |
|
RU2337061C1 |
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК | 2007 |
|
RU2352523C1 |
КОРОТКИЕ УГЛЕРОДНЫЕ НАНОТРУБКИ | 2002 |
|
RU2309118C2 |
Способ и приспособление для нагревания хлебопекарных камер | 1923 |
|
SU2003A1 |
ВЕРЕЩАГИН А.Л | |||
Детонационные наноалмазы | |||
- Барнаул, 2001, с.14, рис.1.1. |
Авторы
Даты
2012-03-27—Публикация
2010-04-01—Подача