Способ получения лигноцеллюлозного сорбента из плодовых оболочек подсолнечника Российский патент 2017 года по МПК B01J20/00 

Описание патента на изобретение RU2616661C1

Изобретение относится к способам получения сорбентов на основе растительного сырья и может быть использовано в фармацевтической и пищевой промышленности.

Сорбция занимает значимое место в лечении разных заболеваний, особенно сопровождающихся интоксикацией организма. Сорбенты связывают и выводят из организма эндо- и экзогенные вещества и представлены на современном рынке препаратами, созданными как на природной основе, так и синтетическими. Они применяются на практике в разных областях медицины и ветеринарии.

Известен способ получения сорбента на основе дерновины мха, который представляет собой гранулы, содержащие Sphagnum fuscum (сфагновый или торфяной мох). Высушенную дерновину измельчают до размера частиц 0,1-0,3 мм. Далее ее смешивают с 10%-ным водным медицинским низкомолекулярным поливинилпирролидоном, гранулируют, высушивают и повторно гранулируют. Остаточная влажность сухих гранул составляет не более 30-35% [1]. Адсорбционная активность полученных сорбентов по метиленовому синему - 86-327 мг/г. Недостатками данного способа являются: сложность добычи сырья, использование дополнительного органического вещества и усложнение процесса изготовления сорбента за счет необходимости грануляции сырья.

Известен способ получения сорбента из плодовых оболочек подсолнечника. Способ включает измельчение плодовых оболочек подсолнечника, кислотный гидролиз 1-36%-ным раствором кислоты в течение 1,5-4,5 часов в режиме кипения при давлении насыщенных паров 3,0 атм, промывку 0,1-1,0%-ным раствором щелочи и умягченной водой и сушку [2]. Недостатком данного способа является усложнение процесса получения гидролизного продукта с использованием в некоторых примерах достаточно концентрированных кислот, высокой температуры и давления.

Известен способ получения сорбентов из отходов химической переработки древесины. В качестве сырья используют лигнинсодержащий побочный продукт, образующийся при получении целлюлозы делигнификацией опилок древесины в среде - уксусная кислота - пероксид водорода в присутствии сернокислотного катализатора. Сорбенты получают экстракцией примесей 0,4%-ным раствором гидрокарбоната натрия при комнатной температуре, гидромодуле 2 при перемешивании в течение 15 мин. Далее экстракты отделяют, целевые продукты промывают водой и высушивают [3]. Адсорбционная активность полученных сорбентов по йоду - 34-39%, по метиленовому синему - 87-89 мг/г, по желатину - 183-312 мг/г. К недостаткам данного способа можно отнести многостадийность процесса, использование большого количества химических веществ в процессе производства и невысокую адсорбционную активность сорбента в отношении метиленового синего.

Наиболее близким к заявляемому является способ получения сорбента из коры березы [4]. Воздушно-сухую березовую кору измельчают на дезинтеграторе и подвергают активации водяным паром в процессе взрывного автогидролиза. Для этого сырье загружают в предварительно нагретый реактор, куда подают водяной пар, за счет которого в течение за 8-10 с доводят температуру и давление в реакторе до оптимальных значений, а именно до температуры 150-220°С и давления 2,5-4,0 МПа. Исходное сырье выдерживают при заданных условиях в течение 30-120 с, затем давление сбрасывают до атмосферного с помощью шарового крана в течение 1 с для создания эффекта «взрыва». При таких условиях происходит механическое разрушение частиц сырья и гидролиз слабых связей в лигноуглеводном комплексе, что создает предпосылки для более полного удаления веществ, растворимых в щелочи, из объема частиц коры. Адсорбционная активность полученных сорбентов по метиленовому синему составляет 60-150 мг/г (таблица).

Недостатками способа является многостадийность процесса, необходимость использования специального оборудования и удорожание технологии за счет необходимости нагрева реакционной смеси при повышенном давлении.

Задачей изобретения является разработка способа получения нового эффективного лигноцеллюлозного сорбента с повышенной сорбционной активностью путем переработки отхода производства подсолнечника.

Технический результат заключается в расширении круга сорбентов, имеющих повышенную адсорбционную активность относительно низкомолекулярных соединений, и возможности решения проблемы утилизации многотоннажного отхода при переработке подсолнечника.

Указанный технический результат достигается способом получения лигноцеллюлозного сорбента на основе природного сырья - плодовых оболочек подсолнечника посредством обработки измельченного сырья 1%-ным раствором NaOH.

Способ осуществляют следующим образом: шелуху просеивают через сито, используют фракцию с размером частиц более 2 мм, промывают дистиллированной водой и высушивают на воздухе. Далее образцы измельчают в мельнице-ступке Pulverisette 2 (FRITSCH, Германия), фракционируют с помощью набора сит и используют фракции с размером частиц 0,160-0,315 и 0,315-0,500 мм, которые подвергают обработке 1%-ным раствором гидроксида натрия в течение 60 мин, при комнатной температуре без перемешивания с последующей промывкой дистиллированной водой, нейтрализацией 1%-ным раствором соляной кислоты и промывкой дистиллированной водой до нейтральной реакции среды. В процессе обработки происходит удаление из сырья веществ, растворимых в щелочи, и увеличение адсорбционной активности получаемого продукта.

Предлагаемый способ получения лигноцеллюлозного сорбента отличается от способов, известных из уровня техники, тем, что его получают из плодовых оболочек подсолнечника обработкой 1%-ным раствором гидроксида натрия при комнатной температуре. Преимуществами заявляемого способа получения лигноцеллюлозного сорбента является возможность осуществления способа при комнатной температуре и атмосферном давлении без использования специального оборудования. Сопоставительный анализ существенных признаков заявляемого способа с существенными признаками аналогов и прототипа свидетельствует о его соответствии критерию «новизна».

Определение химического состава полученного заявляемым способом сорбента выполнено методом энергодисперсионной рентгенофлуоресцентной спектроскопии (ЭД РФС) на спектрометре Shimadzu EDX 800 HS (Япония). Рентгенофазовый анализ проведен на дифрактометре D8 ADVANCE в CuKα-излучении; исследование морфологии поверхности сорбента проводилось на сканирующем электронном микроскопе (СЭМ) высокого разрешения Hitachi S 5500 (Япония). С целью определения строения образцов были записаны ИК-спектры поглощения в области 400-4000 см-1 в бромиде калия на Фурье-спектрометре Bruker Vertex 70 (Германия). Насыпную плотность определяли по ГОСТ 8269.0-97 [5]; массовую долю золы устанавливали по ГОСТ 12596-67 [6], воды - по ГОСТ 12597-67 [7]. Адсорбционную активность полученного продукта определяли по йоду по ГОСТ 6217-74 [8], по метиленовому голубому и метиленовому оранжевому - по ГОСТ 4453-74 [9].

Заявляемый способ получения лигноцеллюлозного сорбента из плодовых оболочек подсолнечника поясняется снимками, графиками и изображениями, приведенными на фиг. 1-4.

Лигноцеллюлозный сорбент, полученный заявляемым способом, представляет собой порошкообразный материал серого цвета, удлиненные частицы которого имеют ширину 250 мкм, длину до 1000 мкм и содержат трубчатые каналы диаметром около 20 мкм (фиг. 1). Микрозондовый элементный анализ показал, что поверхностный слой продукта содержит ~39% C и ~28% O (фиг. 2); в образце содержится ~4,5% сорбированной воды. Зольность полученного сорбента составляет 0,29%; насыпная плотность продукта равна 258 кг/м3; абсолютная набухаемость за сутки равна 0,1 мл/г, а относительная - 1,2.

ИК-спектр поглощения в области 400-4000 см-1 указывает на наличие в сорбенте продукта, основу которого составляют целлюлоза и лигнин (фиг. 3): интенсивная широкая полоса поглощения с максимумом в области 3430 см-1 отвечает валентным колебаниям ОН-групп различной природы; полоса поглощения в области 2922 и 2853 см-1 соответствует валентным колебаниям алифатических групп; 1639 см-1 - деформационным колебаниям ОН-групп и колебаниям ароматического кольца. Кроме того, в спектре углеродсодержащего сорбента наблюдаются полосы поглощения при 1461-1380 см-1, соответствующие деформационным колебаниям СН2- и СН3-групп, в области 1100-1300 см-1 - полосы поглощения СО-групп простых и сложных эфиров. Полоса в области 1240 см-1 соответствует валентным колебаниям связей С-О вторичных спиртов. Образец находится в рентгеноаморфном состоянии (фиг. 4).

Для проверки сорбирующей способности полученных сорбентов были использованы вещества, рекомендуемые фармакопейными статьями для оценки адсорбционной активности в отношении низкомолекулярных токсикантов - йода, метиленового синего и метиленового оранжевого. Полученные экспериментальные данные по сорбционной активности полученных лигноцеллюлозных сорбентов приведены в таблице, в которой указаны аналогичные показатели для прототипа и сорбента, используемого в медицине. Из таблицы видно, что сорбционная емкость полученных лигноцеллюлозных сорбентов (примеры 1, 2) по йоду и красителям незначительно отличается друг от друга Адсорбционная активность полученных образцов по метиленовому синему превышает активность медицинского препарата «Полифепан» и приближается к лучшим показателям образцов сорбента прототипа, полученным взрывным автогидролизом. Выбор размера частиц исходного сырья для осуществления заявляемого способа получения лигноцеллюлозного сорбента обусловлен тем, что экспериментальным путем было установлено снижение сорбционной активности сорбента при размере частиц более 0,500 мм и существенное затруднение рассева фракции менее 0,160 мм.

Таким образом, предлагаемый способ позволяет расширить круг сорбентов, получаемых из экологически чистого возобновляемого природного сырья - плодовых оболочек подсолнечника, и решить проблему утилизации многотоннажных отходов производства подсолнечного масла.

Сорбент, полученный по заявляемому способу, имеет повышенную сорбционную активность по отношению к низкомолекулярным токсикантам и может быть использован в фармацевтической промышленности и ветеринарии.

Возможность осуществления предлагаемого изобретения подтверждается ниже приведенными примерами.

Пример 1

Плодовые оболочки подсолнечника просеивали через сито, для исследования использовали фракцию с размером частиц больше 2 мм, промывали дистиллированной водой и высушивали на воздухе. Далее образцы измельчали в мельнице-ступке Pulverisette 2 (FRITSCH, Германия), фракционировали с помощью набора сит и использовали фракции с размером частиц 0,160-0,315. Образцы подвергали обработке 1%-ным раствором гидроксида натрия в течение 60 мин при комнатной температуре без перемешивания с последующей промывкой дистиллированной водой и дальнейшей нейтрализацией 1%-ной соляной кислотой и промывкой дистиллированной водой до нейтральной реакции среды. Полученные образцы высушивали в сушильном шкафу при t=105°С до постоянной массы. Выход готового продукта составил 82% (от взятой фракции). Образец сорбента проявляет сорбционную способность по отношению к йоду (36,8%), метиленовому синему (135,0 мг/г), метиленовому оранжевому (71,2 мг/г).

Пример 2

Плодовые оболочки подсолнечника просеивали через сито, для исследования использовали фракцию с размером частиц больше 2 мм, промывали дистиллированной водой и высушивали на воздухе. Далее образцы измельчали в мельнице-ступке Pulverisette 2 (FRITSCH, Германия), фракционировали с помощью набора сит и использовали фракции с размером частиц 0,315-0,500 мм. Образцы подвергали обработке 1%-ным раствором гидроксида натрия в течение 60 мин при комнатной температуре без перемешивания с последующей промывкой дистиллированной водой и дальнейшей нейтрализацией 1%-ной соляной кислотой и промывкой дистиллированной водой до нейтральной реакции среды. Полученные образцы высушивали в сушильном шкафу при t=105°С до постоянной массы. Выход готового продукта составил 85% (от взятой фракции). Образец сорбента проявляет сорбционную способность по отношению к йоду (39,3%), метиленовому синему (123,7 мг/г), метиленовому оранжевому (72,2 мг/г).

Литература

1. Пат. 2391998 Российская Федерация, опубл. 20.06.2010.

2. Пат. 13829 Республика Беларусь, опубл. 30.12.2010.

3. Пат. 2471550 Российская Федерация, опубл. 10.01.2013.

4. Пат. 2497537 Российская Федерация, опубл. 10.11.2013.

5. ГОСТ 8269.0-97. Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-химических испытаний.

6. ГОСТ 12596-67. Угли активные. Метод определения массовой доли золы.

7. ГОСТ 12597-67. Сорбенты. Метод определения массовой доли воды в активных углях и катализаторах на их основе.

8. ГОСТ 6217-74. Уголь активный древесный дробленый. Технические условия.

9. ГОСТ 4453-74. Уголь активный осветляющий древесный порошкообразный.

Похожие патенты RU2616661C1

название год авторы номер документа
Способ получения сорбентов из отходов глубокой переработки подсолнечного шрота 2022
  • Смятская Юлия Александровна
  • Базарнова Юлия Генриховна
  • Севастьянова Анна Дмитриевна
RU2799342C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ИЗ ЛИГНОЦЕЛЛЮЛОЗНОГО СЫРЬЯ 1995
  • Еперин А.П.
  • Климентов А.С.
  • Кириллов Н.А.
  • Шмаков Л.В.
  • Шевченко В.Г.
  • Белянин Л.А.
RU2089284C1
СПОСОБ ПОЛУЧЕНИЯ ЛИГНИНОВОГО СОРБЕНТА 2011
  • Кузнецов Борис Николаевич
  • Судакова Ирина Геннадьевна
  • Гарынцева Наталья Викторовна
RU2471550C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ИЗ ЛУЗГИ ПОДСОЛНЕЧНИКА 2017
  • Грачева Наталья Владимировна
  • Сиволобова Наталья Олеговна
  • Желтобрюхов Владимир Федорович
  • Сикорская Ангелина Викторовна
RU2650979C1
Способ сорбционной очистки вод от аммонийного азота предприятий рыборазведения 2017
  • Серпокрылов Николай Сергеевич
  • Вильсон Елена Владимировна
  • Смоляниченко Алла Сергеевна
  • Яковлева Елена Вячеславовна
  • Халил Ахмед Собхи Авед Элсайед
RU2671329C1
СПОСОБ ПОЛУЧЕНИЯ АКТИВИРОВАННОГО ПОРОШКА ЧАГИ 2014
  • Кох Елена Сергеевна
  • Гаврилов Андрей Станиславович
  • Ларионов Леонид Петрович
RU2569751C1
ЭНТЕРОСОРБЕНТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2006
  • Кузнецова Светлана Алексеевна
  • Щипко Максим Леонидович
  • Кузнецов Борис Николаевич
  • Ковальчук Наталья Михайловна
  • Веприкова Евгения Владимировна
  • Лезова Анастасия Анатольевна
RU2311954C2
Способ получения энтеросорбента из лузги подсолнечника 2023
  • Базарнова Юлия Генриховна
  • Смятская Юлия Александровна
RU2819217C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ИЗ ЛУЗГИ ПОДСОЛНЕЧНИКА 2017
  • Грачева Наталья Владимировна
  • Сиволобова Наталья Олеговна
  • Желтобрюхов Владимир Федорович
  • Сикорская Ангелина Викторовна
  • Жашуева Камила Алиевна
RU2650978C1
УГЛЕРОДСОДЕРЖАЩИЙ СОРБЕНТ ИЗ РАСТИТЕЛЬНОГО СЫРЬЯ И СПОСОБ ОЧИСТКИ ВОДЫ ОТ СУЛЬФИДОВ НА ЕГО ОСНОВЕ 2015
  • Земнухова Людмила Алексеевна
  • Арефьева Ольга Дмитриевна
  • Моргун Наталья Павловна
  • Ковехова Анна Васильевна
  • Климова Ульяна Андреевна
RU2597381C1

Иллюстрации к изобретению RU 2 616 661 C1

Реферат патента 2017 года Способ получения лигноцеллюлозного сорбента из плодовых оболочек подсолнечника

Изобретение относится к способам получения сорбентов на основе растительного сырья и может быть использовано в фармацевтической и пищевой промышленности. Способ получения лигноцеллюлозного сорбента включает измельчение плодовых оболочек подсолнечника до размера частиц 0,160-0,500 мм, обработку 1%-ным раствором гидроксида натрия при комнатной температуре в течение 60 мин, промывку водой, нейтрализацию и сушку при t=105°С. Изобретение обеспечивает повышение сорбционной активности сорбента, расширение круга сорбентов, а также возможность утилизировать многотоннажные отходы при переработке подсолнечника. 1 з.п. ф-лы, 4 ил., 1 табл., 2 пр.

Формула изобретения RU 2 616 661 C1

1. Способ получения лигноцеллюлозного сорбента на основе природного сырья, включающий измельчение сырья, обработку 1%-ным раствором гидроксида натрия в течение 60 мин, промывку водой, нейтрализацию и сушку, отличающийся тем, что в качестве природного сырья используют плодовые оболочки подсолнечника, которые измельчают до размера частиц 0,160-0,500 мм, обработку щелочью осуществляют при комнатной температуре, а высушивают полученный лигноцеллюлозный сорбент при t=105°С.

2. Способ по п. 1, отличающийся тем, что полученный лигноцеллюлозный порошкообразный продукт находится в рентгеноаморфном состоянии, удлиненные частицы которого имеют ширину 250 мкм, длину до 1000 мкм и содержит трубчатые каналы диаметром около 20 мкм.

Документы, цитированные в отчете о поиске Патент 2017 года RU2616661C1

СПОСОБ ПОЛУЧЕНИЯ ЭНТЕРОСОРБЕНТА 2012
  • Веприкова Евгения Владимировна
  • Кузнецова Светлана Алексеевна
  • Маляр Юрий Николаевич
RU2497537C1
СПОСОБ ПОЛУЧЕНИЯ ЛИГНИНОВОГО СОРБЕНТА 2011
  • Кузнецов Борис Николаевич
  • Судакова Ирина Геннадьевна
  • Гарынцева Наталья Викторовна
RU2471550C1
ЭНТЕРОСОРБЕНТ РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2008
  • Дмитрук Степан Евгеньевич
  • Бабешина Лариса Геннадьевна
  • Келус Надежда Васильевна
RU2391998C1
Катодная ламп 1929
  • Мошкович С.М.
SU13829A1

RU 2 616 661 C1

Авторы

Земнухова Людмила Алексеевна

Ковехова Анна Васильевна

Арефьева Ольга Дмитриевна

Моргун Наталья Павловна

Даты

2017-04-18Публикация

2015-10-26Подача