Способ моделирования ишемии глаза Российский патент 2017 года по МПК G09B23/28 

Описание патента на изобретение RU2620014C1

Предлагаемое изобретение относится к офтальмологии и предназначено для создания модели ишемии глаза.

Нарушение кровообращения в глазу лежит в основе развития большинства глазных патологий, в том числе глаукомы. При глаукоме ишемия является фактором, способствующим развитию метаболических изменений в тканях как переднего, так и заднего отделов глаза, усиливает гидродинамические нарушения в глазу и гибель нервных клеток сетчатки. В настоящее время в лечении глаукомы, помимо снижения внутриглазного давления (ВГД), большое значение придается профилактике и коррекции метаболических изменений в глазу, особенно таких, как нарушение микроциркуляции, усиление свободнорадикальных процессов, развитие гипоксии [Рациональная фармакотерапия в офтальмологии, ред. Е.А. Егоров, Москва, 2004; Егоров Е.А. Принципы нейропротекторной терапии глаукомной оптической нейропатии. Национальное руководство по глаукоме. Ред. Е.А. Егоров, Ю.С. Астахов, А.Г. Щуко. Москва, 2008]. Однако арсенал подобных препаратов в настоящее время очень незначительный. Апробация и экспериментальные исследования эффективности действия новых препаратов требуют использования моделей ишемического повреждения глаз экспериментальных животных. Большинство экспериментальных работ по созданию модели ишемического повреждения глаза проводилось на крысах, кровоснабжение глаза которых сходно с кровотоком глаза человека. Известны механические и метаболические модели создания глазной ишемии in vivo.

К механическим моделям относятся: 1) окклюзия церебральных артерий и ретинальных сосудов различными способами: лигированием (перевязкой) [Lavinsky D., Arterni N.S., Achaval М., Netto С.А. Chronic bilateral common carotid artery occlu-sion: a model for ocular ischemic syndrome in the rat // Arch Clin Exp Ophthalmol. 2006 Feb; 244(2): 199-204], фотокоагуляцией [Romano С., Price M., Bai H.Y., Olney J.W. Neuroprotectants in Honghua: glucose attenuates retinal ischemic damage. Inv. Ophthalmol. Vis. Sci. 1993; 34 (1): 72-80.], созданием искусственного тромбоза [Daugeliene L., Niwa M., Hara A., Matsuno H., Yamamoto Т., Kitazawa Y., Uematsu T. Transcient ischemic injury in the rat retina caused by trombotic occlusion-thrombolytic reperfusion. Inv. Ophthalmol. Vis. Sci. 2000; 41 (9): 2743-2747.]; 2) модели с повышением внутриглазного давления с помощью перфузии физиологического раствора в переднюю камеру глаза [Wang JM1, Sun NX, Hui N, Fan YZ, Feng HX, Zhao SP Effects of rAAV-mediated rhBDNF gene transfection on BDNF gene expression in the retina of a rabbit model of acute high intraocular pressure.Nan Fang Yi Ke Da Xue Xue Bao. 2009 Nov; 29(11): 2201-4]; 3)хирургические способы - рассечение глазных мышц [Bagheri A., Tavakoli М., Torbati P., Mirdehghan M., Yaseri M., Safarian О., Yazdani S., Silbert D. Natural course of anterior segment ischemia after disinsertion of extraocular rectus muscles in an animal model // J AAPOS. 2013 Aug; 17(4): 395-401].

Перечисленные модели имеют ряд недостатков. В первую очередь, эти воздействия зачастую необратимо повреждают ткани глаза, что исключает возможность повторно использовать лабораторных животных в эксперименте, инвазивны, трудно воспроизводимы, не позволяют регулировать дозу ишемического фактора и достоверно оценивать реперфузионные изменения.

К метаболическим моделям относят модели с введением сосудосуживающих препаратов. Самым мощным из таких агентов является эндотелии-1 (ЭТ-1), который используется для моделирования ишемии заднего отрезка глаза [Koichi Masuzawa, Subrina Jesmin, Seiji Maeda, Yuichi Kaji, Tetsuro Oshika, Sohel Zaedi, Nobutake Shimojo, Naoko Yaji, Takashi Miyauchi, Katsutoshi Goto A Model of Retinal Ischemia-Reperfusion Injury in Rats by Subconjunctival Injection of Endothelin. Exp Biol Med (Maywood) 2006 231: 1085-1089].

Существенным недостатком таких моделей является необходимость введения высокой дозы ЭТ-1 с целью воспроизведения ишемии. В таких условиях нельзя исключить вероятность возникновения побочных эффектов со стороны системной циркуляции крови и повреждение ишемизированных тканей глаза, эти факторы также препятствуют возможности повторного использования животных в эксперименте. Кроме того, отсутствует четкая система количественной оценки степени развития транзиторной ишемии глаза. Эти обстоятельства существенно затрудняют процесс оценки эффективности действия противоишемических препаратов и значительно удорожают проведение исследований.

Известные модели хронической ишемии глаза вызывают грубые необратимые морфологические изменения в ишемизированных тканях, при которых трудно установить эффективность действия препарата.

Ближайшим аналогом предлагаемого изобретения является способ моделирования ишемии глаза путем отсечения верхних прямых мышц глаза кролика с регистрацией развития ишемии переднего отдела глаза [Bagheri А., Tavakoli М., Torbati P., Mirdehghan М., Yaseri М., Safarian О., Yazdani S., Silbert D. Natural course of anterior segment ischemia after disinsertion of extraocular rectus muscles in an animal model // J AAPOS. 2013 Aug; 17(4): 395-401].

К существенным недостаткам этого способа относится необратимость такого повреждения, ишемия, вызванная хирургическим повреждением глазных мышц животных, не является адекватной физиологической моделью и не подходит для оценки эффективности лекарственных веществ во время ишемии.

Задачей изобретения является разработка модели транзиторной ишемии глаза.

Техническим результатом предлагаемого изобретения является возможность воспроизведения дозированной, транзиторной ишемии глаза для оценки действия фармакологических препаратов с получением адекватных данных.

Технический результат достигается за счет субконъюнктивального введения 0.1-0.3 мл 1% раствора фенилэфрина.

Для оценки гемодинамики глаза кроликов нами была разработана методика офтальмоплетизмографии (ОПГ) с помощью прибора «Офтальмоплетизмограф ОП-А» (СКТБ «Оптимед» (Москва). Датчики ОПГ фиксируют на роговице обоих глаз животного, что существенно облегчает процесс регистрации показателей глазного кровотока. Существующий метод ОПГ был создан для определения увеального кровотока глаза человека и применен нами на экспериментальных животных. Конструкция «Офтальмоплетизмографа ОП-А» позволяет одновременно исследовать гемодинамику парных глаз и объективно оценивать межокулярную асимметрию внутриглазного кровотока. В ходе проведения ОПГ регистрируется динамическое состояние внутриглазного кровообращения у экспериментальных животных, степень ишемизации подтверждается уровнем гипоксии, который определяется по значениям концентрации лактата во внутриглазной жидкости ферментативным амперометрическим методом с помощью прибора Biosen (EKF Diagnostic).

«Офтальмоплетизмограф ОП-А» определяет интенсивность кровенаполнения сосудов увеального тракта глаза. Методика основана на регистрации пульсовых колебаний объема глазного яблока в течение сердечного цикла, возникающих как следствие пульсации внутриглазных сосудов. Расширение сосудов во время систолы вызывает растяжение корнеосклеральной капсулы глазного яблока и уменьшения кривизны роговицы. При диастоле внутриглазные сосуды вследствие эластичности сужаются, уменьшается растяжение корнеосклеральной капсулы, роговица становится более выпуклой. Колебания роговицы вызывают изменения объема воздуха внутри колпачка, который герметично фиксируется в области лимба, и регистрируются высокоточным датчиком. Описанные колебания по своей природе являются пульсовой волной, которая характеризует систолический прирост объема крови, циркулирующий по внутриглазным сосудам. По форме и амплитуде пульсовой волны можно судить об интенсивности внутриглазного кровотока и продолжительности его отдельных фаз.

При исследовании глазного кровотока учитываются следующие показатели:

1. Систолический прирост пульсового объема переднего сегмента (СППО), мм3 - показатель отражает разницу между максимальным и минимальным объемом переднего сегмента глазного яблока в течение одного сердечного цикла.

2. Пульсовой объем (ПО), мм3 - величина СППО в пересчете на площадь всего глазного яблока.

3. Основной показатель, который используется в исследовании - минутный объем кровотока (МОК), мм3 - суммарная величина объема крови, протекающего во время сердечного цикла через системы цилиарных и ретинальных сосудов за 1 мин.

МОК=ПО * Ps, где Ps - частота пульса.

В случае обнаружения межокулярной асимметрии в параметрах плетизмографии у кролика до начала эксперимента, превышающей 11%, свидетельствующей о наличии нарушения кровообращения в одном из глаз, животное выводили из исследования.

По полученным нами данным ОПТ субконъюнктивальное введение 0.1-0.3 мл 1% раствора фенилэфрина вызывает значительное уменьшение кровотока в глазу, при этом интенсивность снижения кровотока зависит от вводимой дозы, максимальное снижение объема кровотока происходит в интервале 60-120 минут (минимум - 90 мин) после инъекции. Поэтому для изучения эффективности лекарственных препаратов, оказывающих влияние на интенсивность увеального кровотока, целесообразно оценивать их действие именно в данный отрезок времени с целью получения адекватных данных.

Для пролонгирования периода развития ишемии до 180-240 мин было установлено время допустимого повторного введения 0.1-0.3 мл 1% раствора фенилэфрина - 90-120 мин после первой инъекции.

Кроме того, определение концентрации лактата во внутриглазной жидкости демонстрирует достоверное увеличение содержания лактата во внутриглазной жидкости после введения 0.1-0.3 мл 1% раствора фенилэфрина. Это подтверждает факт развития гипоксии вследствие ишемизации тканей глаза, так как известно, что лактат является маркером гипоксии [Cerovic, О., Golubovi, V., Spec-Marn, A., Kremzar, В., Vidmar, G. Relationship between injury severity and lactate levels in severely injured patients // Intensive Care Med., 2003, 29(8), 1300-1305].

На Фиг. 1 отражено влияние различных доз раствора фенилэфрина (субконъюнктивально) на значения МОК в % от МОК контрольного глаза.

На этом сводном графике наглядно показан дозозависимый эффект влияния фенилэфрина на степень развития транзиторной ишемии глаза, влияние на снижение глазного кровотока.

Серией сравнительных измерений действия фенилэфрина установлено, что он вызывает достоверное уменьшение (Р<0,005) значений минутного объема кровотока глаза (МОК). Определена прямая корреляция между величиной дозы и интенсивностью снижения кровотока в глазу. Максимальное снижение МОК происходит в интервале от 60 до 120 мин после субконъюнктивального введения, а разница между этим показателем в контрольном глазу и в глазу после инъекции 0,2 мл фенилэфрина превышала 50%. Результаты демонстрируют также нарастающее достоверное увеличение содержания лактата во внутриглазной жидкости после введения фенилэфрина.

Способ осуществляют следующим образом.

Определяют исходный уровень минутного объема кровотока глаза (МОК). Затем субконъюнктивально вводят 0.1-0.3 мл 1% раствора фенилэфрина. Для повторного воспроизведения ишемии препарат вводят повторно через 90-120 мин.

Пример 1. Кролик №1. Субконъюктивальная инъекция 0,2 мл физиологического раствора в OD, OS - контроль.

ОПГ на всех этапах эксперимента проводили одновременно на обоих глазах до субконъюктивальной инъекции и каждые 30 мин после нее в течение 120 мин. Животное находилось в спокойном состоянии (низкая степень подвижности, стабильный пульс и артериальное давление) в течение нескольких часов. Для этого однократно вводили Ветранквил 1%, 0,09 мл/кг, внутримышечно. Частота пульса и артериальное давление сохраняли стабильные значения, тонус век не ослабевал, низкая подвижность животного позволяла проводить ОПГ в течение трех часов. Глаза животного располагались на равноудаленном расстоянии от плетизмографа, т.е. голова животного во время измерения была зафиксирована и располагалась фронтально к передней панели прибора. Глазные колпачки держались на роговице каждого глаза без дополнительных компрессионных нагрузок за счет образовавшейся в пространстве между колпачком и роговицей зоны разряженного давления, и дополнительно прижимались веками животного. Установку колпачков и субконъюнктивальную инъекцию проводили после местной анестезии глаз инсталляцией Инокаина (0,4% оксибупрокаин). После завершения сеанса плетизмографии глаза обрабатывали антибиотиком.

Изменение МОК глаз кролика №1 OD и OS после субконъюнктивального введения 0,2 мл физиологического раствора в OD

Как следует из приведенных данных, введение физиологического раствора не оказывает влияние на уровень глазного кровотока.

Пример 2. Кролик №7. Субконъюктивальная инъекция 0,1 мл 1% раствора фенилэфрина в OD, OS - контроль.

Методы исследования такие же, как в примере №1. Инъекцию 0,1 мл 1% раствора фенилэфрина проводили после измерения исходных показателей ОПТ. Изменение МОК OD выражено в % от МОК контрольного глаза.

После однократной инъекции 0,1 мл 1% раствора фенилэфрина у кролика №7 минутный объем глазного кровотока был снижен в течение 180 мин, что свидетельствует о наличии ишемического процесса.

Пример 3. Кролик №9. Субконъюктивальная инъекция 0,15 мл 1% раствора фенилэфрина в OD, OS - контроль.

Методы исследования такие же, как в примере №1. Инъекцию 0,15 мл 1% раствора фенилэфрина проводили после измерения исходных показателей ОПТ. Изменение МОК OD выражено в % от МОК контр. глаза.

Показатели минутного объема глазного кровотока кролика №9 после инъекции 0,15 мл фенилэфрина снизились значительнее по сравнению с показателями МОК за такой же интервал времени у кролика №7, получившего меньшую дозу 0,1 мл 1% раствора фенилэфрина.

Пример 4. Кролик №10. Субконъюктивальная инъекция 0,20 мл 1% раствора фенилэфрина в OD, OS - контроль.

Методы исследования такие же, как в примере №1. Инъекцию проводили после измерения исходных показателей ОПТ.

Изменение МОК OD выражено в % от МОК контрольного глаза.

Инъекция большей дозы фенилэфрина - 0,20 мл кролику №10 вызвала максимальное снижение МОК в глазу, что свидетельствует о дозозависимом эффекте влияния фенилэфрина на развитие ишемии глаза.

Пример 5. Кролик №12 получил 2 инъекции 0,20 мл фенилэфрина с интервалом 90 мин.

Изменение МОК OD выражено в % от МОК контрольного глаза.

Повторная инъекция 0,2 мл фенилэфрина с интервалом 90 мин после первой позволила пролонгировать период развития транзиторной ишемии глаза до 240 мин.

Пример 6. Кролик №6. Определение содержания лактата во внутриглазной жидкости через 60 мин после инъекции фенилэфрина.

Пример 7. Кролик №11. Определение содержания лактата во внутриглазной жидкости через 120 мин после инъекции фенилэфрина.

После окончания сеанса ОПТ у кролика №6 и у кролика №11 осуществляли взятие ВЖ из передней камеры методом парацентеза роговицы. Как и в предыдущих экспериментах, у каждого кролика на одном глазу воспроизводили ишемию введением 0,20 мл фенилэфрина, парный глаз служил контролем. Измерение концентрации лактата в ВЖ проводили сразу после ее взятия ферментативным амперометрическим методом с помощью прибора Biosen (EKF Diagnostic).

Концентрация лактата в ВГЖ в условиях ишемии, % от контроля

Полученные результаты демонстрируют нарастающее достоверное увеличение содержания лактата во внутриглазной жидкости после введения фенилэфрина, что указывает на развитие гипоксии вследствие ишемизации тканей глаза.

Таким образом, транзиторная модель ишемии глаза может быть использована для изучения эффективности действия лекарственных препаратов, оказывающих влияние на интенсивность увеального кровотока с возможностью регулирования дозы ишемического фактора без развития побочных эффектов.

Похожие патенты RU2620014C1

название год авторы номер документа
СПОСОБ СОЗДАНИЯ МОДЕЛИ ТРАНЗИТОРНОЙ ИШЕМИИ СЕТЧАТКИ 2015
  • Нероев Владимир Владимирович
  • Киселева Татьяна Николаевна
  • Чудин Антон Вячеславович
  • Безнос Ольга Валерьевна
  • Хорошилова Инна Петровна
  • Щипанова Александра Ивановна
  • Слепова Ольга Семеновна
  • Балацкая Наталья Владимировна
RU2577242C1
ХИРУРГИЧЕСКИЙ СПОСОБ ЛЕЧЕНИЯ НЕОВАСКУЛЯРИЗАЦИИ РОГОВИЦЫ 2008
  • Поздеева Надежда Александровна
  • Елаков Юрий Николаевич
  • Руссков Константин Николаевич
RU2369364C1
Способ лечения передних увеитов животных и птиц легкой и средней степени тяжести 2018
  • Соломахина Любовь Анатольевна
  • Аргунов Муаед Нурдинович
RU2707279C1
СПОСОБ ПРЕДОПЕРАЦИОННОЙ ПОДГОТОВКИ БОЛЬНОГО К АНТИГЛАУКОМАТОЗНОЙ ОПЕРАЦИИ 2013
  • Онищенко Александр Леонидович
  • Колбаско Анатолий Владимирович
  • Тараш Ольга Сергеевна
  • Исаков Иван Николаевич
  • Онищенко Елена Григорьевна
RU2530647C1
СПОСОБ ЛЕЧЕНИЯ И ПРОФИЛАКТИКИ ГЛАЗНЫХ БОЛЕЗНЕЙ, СВЯЗАННЫХ С ИШЕМИЕЙ ТКАНЕЙ ГЛАЗА 2004
  • Кост Ольга Алексеевна
  • Чеснокова Наталья Борисовна
  • Макаров Павел Васильевич
  • Никольская Ирина Ивановна
  • Безнос Ольга Валерьевна
  • Биневский Петр Витальевич
  • Казанская Новелла Федоровна
RU2268722C2
КОМПОЗИЦИИ И СПОСОБЫ ВВЕДЕНИЯ СРЕДСТВ, СВЯЗЫВАЮЩИХ ТУБУЛИН, ДЛЯ ЛЕЧЕНИЯ ГЛАЗНЫХ ЗАБОЛЕВАНИЙ 2002
  • Шеррис Дэвид
  • Вуд Марк
RU2354398C2
ОФТАЛЬМОЛОГИЧЕСКИЙ ПРЕПАРАТ В ВИДЕ ГЛАЗНЫХ КАПЕЛЬ, СОДЕРЖАЩИЙ ДИСУЛЬФИРАМ И ТАУРИН 2012
  • Кедик Станислав Анатольевич
  • Ярцев Евгений Иванович
  • Панов Алексей Валерьевич
  • Суслов Василий Викторович
  • Сакаева Ирина Вячеславовна
RU2485939C1
КОМПОЗИЦИИ И СПОСОБЫ ВВЕДЕНИЯ СРЕДСТВ, СВЯЗЫВАЮЩИХ ТУБУЛИН, ДЛЯ ЛЕЧЕНИЯ ГЛАЗНЫХ ЗАБОЛЕВАНИЙ 2004
  • Шеррис Дэвид
  • Вуд Марк
RU2359693C2
СПОСОБ МОДЕЛИРОВАНИЯ ТРАНЗИТОРНОЙ ИШЕМИИ СЕТЧАТКИ У КРЫС 2015
  • Киселева Татьяна Николаевна
  • Чудин Антон Вячеславович
  • Хорошилова Инна Петровна
  • Щипанова Александра Ивановна
  • Слепова Ольга Семеновна
  • Балацкая Наталья Владимировна
RU2577449C1
СРЕДСТВО ДЛЯ ПРОФИЛАКТИКИ И ЛЕЧЕНИЯ ОФТАЛЬМОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ 2008
  • Глущенко Ирина Александровна
  • Глущенко Александр Владимирович
  • Глущенко Оксана Ивановна
RU2359658C1

Иллюстрации к изобретению RU 2 620 014 C1

Реферат патента 2017 года Способ моделирования ишемии глаза

Изобретение относится к медицине, в частности к офтальмологии, и предназначено для создания модели ишемии глаза. Для этого кролику субконъюнктивально вводят 0.1-0.3 мл 1% раствора фенилэфрина. Способ обеспечивает возможность воспроизведения дозированной, транзиторной ишемии глаза для оценки действия фармакологических препаратов. 1 з.п. ф-лы, 7 пр., 1 ил.

Формула изобретения RU 2 620 014 C1

1. Способ моделирования ишемии глаза, отличающийся тем, что кролику субконъюнктивально вводят 0.1-0.3 мл 1% раствора фенилэфрина.

2. Способ по п. 1, отличающийся тем, что введение повторяют через 90-120 мин.

Документы, цитированные в отчете о поиске Патент 2017 года RU2620014C1

MASUZAWA K
et al
A model of retinal ischemia-reperfusion injury in rats by ю
Exp
Biol
Med
(Maywood)
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1
СПОСОБ МОДЕЛИРОВАНИЯ ТРАНЗИТОРНОЙ ИШЕМИИ СЕТЧАТКИ У КРЫС 2015
  • Киселева Татьяна Николаевна
  • Чудин Антон Вячеславович
  • Хорошилова Инна Петровна
  • Щипанова Александра Ивановна
  • Слепова Ольга Семеновна
  • Балацкая Наталья Владимировна
RU2577449C1
СПОСОБ МОДЕЛИРОВАНИЯ ИШЕМИИ СЕТЧАТКИ ГЛАЗА 2006
  • Иванов Андрей Николаевич
  • Танковский Владимир Эдуардович
  • Швецова Надежда Евгеньевна
  • Мизерова Ольга Владимировна
  • Цапенко Ирина Владимировна
  • Зуева Марина Владимировна
RU2313312C1
RU 2011126854 A, 10.11.2013
CN 103257188 B, 02.04.2014
КИСЕЛЁВА Т.Н
и др
Экспериментальное моделирование ишемического поражения глаза
Вестник Российской академии медицинских наук, 2014, том 69, N 11-12
ITO I et al
Myogenic tone and reactivity of rat ophthalmic artery in acute exposure to high glucose and in a type II diabetic model
Invest Ophthalmol Vis Sci
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1

RU 2 620 014 C1

Авторы

Чеснокова Наталья Борисовна

Григорьев Андрей Владимирович

Мустафаева Ксения Николаевна

Даты

2017-05-22Публикация

2016-07-14Подача