СПОСОБ МОДЕЛИРОВАНИЯ ТРАНЗИТОРНОЙ ИШЕМИИ СЕТЧАТКИ У КРЫС Российский патент 2016 года по МПК A61F9/00 

Описание патента на изобретение RU2577449C1

Изобретение относится к экспериментальной медицине, а именно к офтальмологии, и может быть использовано для создания модели транзиторной ишемии сетчатки (ишемии-реперфузии ретинальных сосудов).

Транзиторная ретинальная ишемия - частая причина снижения и потери зрения, возникающая на фоне сосудистых заболеваний (оптические нейропатии, окклюзии ретинальных сосудов и каротидных артерий, острый приступ закрытоугольной глаукомы и т.д.). Ретинальная ишемия возникает на фоне гипоксии, когда недостаточное содержание кислорода приводит к угнетению метаболических процессов в тканях глаза и апоптозу клеток сетчатки, при этом ее наружные слои более резистентны к гипоксическому стрессу [Janáky М., Grósz A., Tóth Е., Benedek K., Benedek G. Hypobaric hypoxia reduces the amplitude of oscillatory potentials in the human ERG. Doc Ophthalmol. 2007; 114 (1): 45-51; Tinjust D., Kergoat H., Lovasik J.V. Neuroretinal function during mild systemic hypoxia. Aviat Space Environ Med. 2002; 73 (12): 1189-94]. В связи с этим остается актуальным вопрос разработки и выбора экспериментальных моделей сосудистой патологии глаз, что имеет теоретическое значение для расширения понимания механизмов нарушения кровообращения и практическую значимость для оценки эффективности лечения сосудистых заболеваний сетчатки и зрительного нерва.

Для оценки микроциркуляции глаза у животных можно использовать разных животных, например кроликов [Xuan В., Wang Т., Chiou G.С., Dalinger I., Shkineva Т.K., Shevelev S.A. Effects of N-nitropyrazoles on ocular blood flow of rabbits and retinal function recovery of rat eyes after ischemic insults J Ocul Pharmacol Ther. 2001; 17(6): 505-15], но их ретинальные сосуды развиты слабо, и кровоснабжение глаза осуществляется преимущественно из системы хориоидальных сосудов.

У крысы, как и у человека, отмечается преобладание ретинального кровотока, за счет которого осуществляется питание большей части сетчатки, поэтому крысы являются наилучшим объектом для моделирования ишемического поражения сетчатки [Liu Т., Hui L., Wang Y.S., Guo J.Q., Li R., Su J.B., Chen J.K., Xin X.M., Li W.H. In-vivo investigation of laser-induced choroidal neovascularization in rat using spectral-domain optical coherence tomography (SD-OCT). Graefes Archive for Clinical and Experimental Ophthalmology. 2013; 251(5): 1293-1301; Sun C., Li X.X., He X. J, Zhang Q., Tao Y. Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion. Exp Eye Res. 2013; 113:105-116].

Впервые в 1971 году R.W. Flower и соавт. (Flower R. W., Patz A. The effect of hyperbaric oxygenation on retinal ischemia. Ophthalmology and Visual Science. 1971; 10 (8):605-616) предложили модель ретинальной ишемии на кошках. Внутриглазное давление (ВГД) повышали до 110 мм ртутного столба путем канализация передней камеры с помощью иглы 26 gage (13 мм длиной, 0,45 мм толщиной), которая была связана через нейлоновую трубочку с приподнятым контейнером с физиологическим раствором. Данная методика, основанная на повышении давления в глазу с помощью жидкости, использовалась множеством авторов.

Е.R. Buchi и соавт. [Buchi E.R., Suivaizdis I., Fu J. Pressure-induced retinal ischemia in rats: an experimental model for quantitative study. Ophthalmologica. 1991; 203(3): 138-147] воспроизвели подобную модель ишемии-реперфузии на крысах. N.S. Peachey и соавт. [Peachey N.S., Green D.J., Ripps H. Ocular ischemia and the effects of allopurinol on functional recovery in the retina of the arterially perfused cat eye. Investigative Ophthalmology and visual science. 1993; 34(1): 58-65] описали положительный эффект аллопуринола на функциональные характеристики сетчатки в этой модели. Действие ишемии на иммуногистологическом уровне в этой модели у крыс было продемонстрировано в работах Osborne N.N. и соавторов [Osborne N.N., Larsen А.K. Antigens associated with specific retinal cells are affected by ischemia caused by raised intraocular pressure: effect of glutamate antagonists. Neurochem Int. 1996; 29(3): 263-70]. После 60-ти минут ишемии авторы отмечали снижение уровня Thy-1 антигена, локализующегося на мембранах ганглиозных клеток и уровня кальретинина, связанного с амакриновыми клетками сетчатки. Однако уровень антигена Ret-P1 наружных сегментов фоторецепторов не снижался. Кроме того, в мюллеровских клетках отмечалась повышенная экспрессия глиального фибриллярного кислого протеина (GFAP), который в норме обнаруживается лишь в слое ганглиозных клеток сетчатки. На этой модели Chidlow G. и соавт. [Chidlow G., Schmidt K.G., Wood J.P., Melena J., Osborne N.N. Alpha-lipoic acid protects the retina against ischemia-reperfusion. Neuropharmacology. 2002; 43(6): 1015-25] оценивали защитные свойства альфа-липоевой кислоты. После 11 дней интраперитонеального введения крысам препарата в дозе 100 мг/кг исследователи вызывали ишемию в течение 45 минут. Ишемия-реперфузия в контрольной группе вызывала значительное уменьшение амплитуды a- и b-волн электроретинограммы, уровня синтазы оксида азота и Thy-1 антигена и снижение специфической м-РНК ганглиозных клеток. У животных, получавших лечение, эти изменения были менее выражены.

Известно моделирование ишемии тканей глаза подопытных животных с помощью устройства, предложенного Новиковым О.О. и соавт. (патент РФ на полезную модель №112477). Авторами было предложено устройство для механического давления на роговицу с целью повышения ВГД. Преимущество модели в ее простоте и возможности дозировки времени воздействия, но контроль точного уровня ВГД данном случае затруднен.

Ближайшим аналогом (прототипом) предлагаемого изобретения является модель, которую осуществили S.Н. Jung и соавт. [Jung S.Н., Kang K.D., Ji D., Fawcett R.J., Safa R., Kamalden T.A., Osborne N.N. The flavonoid baicalin counteracts ischemic and pxidative insults to retinal cells and lipid peroxidation to brain membranes. Neurochemistry International. 2008; 53(6-8): 325-337]. Они оценивали эффект байкалина (baicalin) - флавоноида, полученного из корня Scutellaria biacalensis, который вводился крысам интраперитонеально. При ретинальной ишемии-реперфузии, обусловленной повышением ВГД до 120 мм ртутного столба в течение 50 минут, в экспериментальной группе животных установлен нейропротекторный эффект флавоноида по сравнению с контрольной группой.

Недостатком данного метода являются трудности в измерении и дозировании подаваемого давления из-за воды, содержащейся в системе.

Описанное авторами устройство для подачи воды не имеет измерительного устройства для контроля давления в системе, а прямое измерение ВГД у крыс затруднено из-за малого размера глаза и отсутствия специального оборудования для этих целей у животных.

Задачей изобретения является разработка простого, воспроизводимого и экономически приемлемого способа создания модели транзиторной ишемии сетчатки у крыс с помощью высокого внутриглазного давления с простой системой дозирования и контроля подаваемого давления.

Технический результат заключается в

- расширении диапазона моделируемой патологии сетчатки у экспериментальных животных за счет произвольного увеличения возможных степеней транзиторной ишемии сетчатки путем дозирования и контроля подаваемого давления в переднюю камеру глаза;

- простоте, доступности, экономичности моделирования за счет использования технически несложных приемов и доступных технических средств;

- обеспечении надежности, воспроизводимости моделирования за счет достижения гарантированной транзиторности создаваемой ишемии путем объективизации дозирования и контроля давления, подаваемого в переднюю камеру глаза.

Идея нового способа состоит в замене воды в системе воздухом, создании простого устройства из доступных материалов и расширении параметров подачи давления для реализации модели.

Нами впервые предложено использовать воздух в системе вместо воды, что упрощает процесс измерения ВГД за счет прямого подключения анероидного манометра.

Таким образом, нами предложено использовать устройство для повышения ВГД, созданное из доступных материалов, оснащенное манометром, использование которого позволяет в процессе моделирования ишемии сетчатки регулировать давление в пользу его повышения грушей или понижения, открывая клапан спуска воздуха.

Сущность изобретения состоит в следующем.

Способ моделирования транзиторной ишемии сетчатки у крыс предполагает создание повышенного внутриглазного давления. Новым является то, что повышение давления создают нагнетанием воздуха в переднюю камеру глаза под контролем давления. При этом используют устройство, содержащее инъекционную иглу, пневматически связанную гибкими трубками с анероидным манометром и подключенными последовательно ресивером, выполненным в виде манжеты от тонометра, и нагнетателем с клапаном. Воздух нагнетают через канюлю инъекционной иглы. Вкол иглы осуществляют в лимб под углом 25-35 градусов к плоскости, ограниченной лимбом. Далее открытый конец иглы располагают между радужкой и внутренней поверхностью роговицы, ближе к последней. Создают давление в передней камере глаза 110-130 мм ртутного столба. Указанное давление сохраняют в течение в течение 20-60 минут.

Способ осуществляют следующим образом.

1. Устройство для нагнетания воздуха с анероидным манометром может быть получено следующим образом.

Для создания устройства может быть использована, например, система от механического тонометра, например, МТ-10 (Meditech), состоящего из резиновой груши, нагнетающей воздух, манжеты, манометра и замкнутой системы резиновых трубочек. Дополнительно могут быть использованы резиновые трубочки от стетоскопа. Также может быть использована инсулиновая игла размерами 0,4×13 мм. (27 G) и система для внутривенного вливания инфузионных растворов, состоящая из инъекционной иглы, длинной гибкой трубки из поливинилхлорида, роликового регулятора скорости потока и прозрачной камеры.

Для того, чтобы собрать устройство необходимо:

A) Убрать у стетоскопа раструб и наконечник для ушей.

Б) Переставить манометр от механического тонометра в одно из отверстий коротких плечей трубочек от стетоскопа.

B) Соединить второе короткое плечо трубочек стетоскопа с трубочкой от тонометра, в которой находился манометр изначально. Для соединения используют прозрачную трубку от системы для внутривенных инфузий длиной 2-3 см. Диаметр прозрачной трубочки от системы и резиновой трубочки от тонометра соответствуют таким образом, что возможно установить прозрачную трубочку по типу «ключ в замок». Для герметичности можно использовать изоляционную ленту.

Г) Отрезать от системы для внутривенного вливания часть с инъекционной иглой и прозрачной поливинилхлоридной трубочкой и соединить ее с длинным плечом трубочки стетоскопа.

Д) Поменять стандартную иглу от системы для внутривенного вливания на инсулиновую иглу.

Схема устройства представлена на чертеже, где

1 - анероидный манометр,

2 - ресивер (манжета),

3 - нагнетатель с клапаном (груша),

4 - гибкие пневматические соединительные трубки,

5 - инсулиновая игла.

2. После подготовки устройства к работе и анестезии животного с использованием системного наркоза и введения анестетика местно иглу (5) устанавливают в переднюю камеру глаза следующим образом.

Вкол иглы (5) выполняют в лимб под углом 25-35 градусов к плоскости, ограниченной лимбом, направляя иглу срезом в сторону роговицы. Далее иглу постепенно вводят обычно на 1/2-2/3 ее длины между радужкой и внутренней поверхностью роговицы, как можно ближе к последней, сохраняя расположение среза в сторону роговицы, чтобы не повредить большой хрусталик крысы, сосуды цилиарного тела и радужку.

3. Далее нагнетают воздух в переднюю камеру глаза с помощью нагнетателя с клапаном (грунта) (3) устройства. Контроль давления в системе осуществляют с помощью анероидного манометра (1).

4. Давление повышают до 110-130 мм ртутного столба, клапан сброса воздуха закрывают. Манжета (ресивер) (2) служит для равномерной подачи воздуха без резких перепадов давления, которые сопровождают процесс нагнетания воздуха. Это позволяет исключить травму тканей глаза, обусловленную резкими перепадами давления. После повышения давления в передней камере глаза можно наблюдать побледнение сосудов глазного дна офтальмоскопически и невооруженным глазом, что указывает на ишемию сетчатки.

5. Давление поддерживают на заданном уровне в течение 20-60 минут с помощью дополнительных нажатий на грушу (3).

6. По окончании времени исследования воздушный клапан груши (нагнетателя) открывают, и воздух постепенно выпускают в течение 0,5-1,5 минут. На роговицу накладывают любой кератопротектор или гелевый слезозаменитель (например, видисик).

Возможность создания адекватной транзиторной ишемии сетчатки в крыс с помощью предлагаемого способа подтверждена ультразвуковым дуплексным сканированием в режимах цветового допплеровского энергетического картирования и импульсной допплерографии пораженного и парного глаза на системе Voluson и патогистологическим исследованием сетчатки и сосудистой оболочки с помощью светового микроскопа на микросистеме Leica на базе ФГБУ «МНИИГБ им. Гельмгольца» Минздрава России.

По данным ультразвукового дуплексного сканирования в режимах цветового допплеровского энергетического картирования и импульсной допплерографии на 20 крысах породы Wistar 200-250 г (20 глаз) после повышения ВГД в течение 20-60 минут до 110-130 мм ртутного столба согласно предлагаемому способу в системе отмечалось прекращение кровотока в сосудах сетчатки с постепенным его восстановлением. На 3 и 7 день наблюдалась гиперперфузия в задней цилиарной артерии, центральной артерии сетчатки, длинных цилиарных артериях без значительного изменения скорости венозного кровотока.

Морфологические изменения сетчатки при исследовании энуклеированного глаза на 7 день: сетчатка отечна, ее контур неровный, волнистый, сосуды на 7-ой день без изменений, ганглиозные клетки сетчатки местами находятся в апоптозе, ядра этих клеток имеют вид вакуолей, а хроматин концентрируется по краю цитоплазматической мембраны.

Пример 1.

Крысе m=255 г введен интраперитонеально анестетик общего действия. Наркоз наступил через 5 минут. В левый глаз инсталляция на конъюнктиву местный анестетик (инокаин). Игла устройства введена согласно предлагаемому способу. Давление поднято до 110 мм ртутного столба, клапан для спуска воздуха закрыт, давление удерживали в течение 20 минут. Для этого необходимо делали небольшие подкачки воздуха примерно 1 раз в минуту, ориентируясь на показатели манометра. По истечении 20 минут воздушный клапан открыли и постепенно спускали воздух (около 0,5-1 минуты). Иглу извлекли. На роговицу нанесли гелевый слезозаменитель видисик. По данным ультразвукового дуплексного сканирования в режимах цветового допплеровского энергетического картирования и импульсной допплерографии сразу после моделирования отмечалось прекращение кровотока в сосудах сетчатки с постепенным его восстановлением. На 3 и 7 день наблюдалась гиперперфузия в задней цилиарной артерии, центральной артерии сетчатки, длинных цилиарных артериях без значительного изменения скорости венозного кровотока. Морфологические изменения сетчатки при исследовании энуклеированного глаза на 7 день: сетчатка отечна, ее контур неровный, волнистый, сосуды на 7-ой день без изменений, ганглиозные клетки сетчатки местами находятся в апоптозе, ядра этих клеток имеют вид вакуолей, а хроматин концентрируется по краю цитоплазматической мембраны.

Пример 2.

Крысе m=280 г введен интраперитонеально анестетик общего действия. Наркоз наступил через 5 минут. В левый глаз инсталляция на коньюнктиву местный анестетик (инокаин). Игла устройства введена по предлагаемой схеме. Давление поднято до 130 мм ртутного столба, клапан для спуска воздуха закрыт, давление удерживали в течение 60 минут. Для этого делали небольшие подкачки воздуха примерно 1 раз в минуту, ориентируясь на показатели манометра. После 60 минут воздушный клапан открыли и воздух постепенно спустили (около 0,5-1 минуты). Иглу извлекли. На роговицу нанесли гелевый слезозаменитель видисик.

По данным ультразвукового дуплексного сканирования в режимах цветового допплеровского энергетического картирования и импульсной допплерографии сразу после моделирования отмечалось прекращение кровотока в сосудах сетчатки с постепенным его восстановлением. На 3 и 7 день наблюдалась гиперперфузия в задней цилиарной артерии, центральной артерии сетчатки, длинных цилиарных артериях, со скоростями кровотока, сходными с предыдущим примером, без значительного изменения скорости венозного кровотока. Морфологические изменения сетчатки при исследовании энуклеированного глаза на 7 день: сетчатка отечна, ее контур волнистый и неровный, сосуды на 7-ой день без изменений, ганглиозные клетки сетчатки в состоянии апоптоза, ядра этих клеток имеют вид вакуолей, а хроматин концентрируется по краю цитоплазматической мембраны.

Таким образом мы провели моделирование транзиторной ишемии сетчатки по предлагаемому способу на 20 крысах (20 глаз). Во всех случаях получена транзиторная ишемия сетчатки (ишемия-реперфузия ретинальных сосудов), подтвержденная однотипными изменениями кровотока и морфологии. Предлагаемый способ позволяет создать простую и экономичную модель транзиторной ишемии сетчатки у крыс.

Похожие патенты RU2577449C1

название год авторы номер документа
СПОСОБ СОЗДАНИЯ МОДЕЛИ ТРАНЗИТОРНОЙ ИШЕМИИ СЕТЧАТКИ 2015
  • Нероев Владимир Владимирович
  • Киселева Татьяна Николаевна
  • Чудин Антон Вячеславович
  • Безнос Ольга Валерьевна
  • Хорошилова Инна Петровна
  • Щипанова Александра Ивановна
  • Слепова Ольга Семеновна
  • Балацкая Наталья Владимировна
RU2577242C1
Способ моделирования гипоксического поражения тканей глаза с активацией апоптоза 2016
  • Рябцева Алла Алексеевна
  • Маркитантова Юлия Владимировна
  • Али-Заде Гюнель Хагани Кызы
  • Акберова Севиндж Исмаил Кызы
  • Бабаев Ханага Физули Оглы
RU2614937C1
Способ моделирования ишемии глаза 2016
  • Чеснокова Наталья Борисовна
  • Григорьев Андрей Владимирович
  • Мустафаева Ксения Николаевна
RU2620014C1
СПОСОБ МОДЕЛИРОВАНИЯ ПРОЛИФЕРАТИВНОЙ ВИТРЕОРЕТИНОПАТИИ 2014
  • Хорошилова-Маслова Инна Петровна
  • Лепарская Наталия Леонтиновна
RU2568368C1
Способ коррекции ишемической нейропатии зрительного нерва производным диметиламиноэтанола 7-16 в эксперименте 2017
  • Пересыпкина Анна Александровна
  • Покровский Михаил Владимирович
  • Пажинский Антон Леонидович
  • Покровская Татьяна Григорьевна
  • Победа Анна Сергеевна
  • Бесхмельницына Евгения Александровна
  • Кочкарова Индира Султановна
  • Костина Дарья Александровна
  • Скачилова София Яковлевна
  • Пасенов Константин Николаевич
  • Анциферов Олег Владимирович
  • Ермакова Галина Александровна
RU2663643C1
СПОСОБ МОДЕЛИРОВАНИЯ ИШЕМИИ СЕТЧАТКИ ГЛАЗА 2006
  • Иванов Андрей Николаевич
  • Танковский Владимир Эдуардович
  • Швецова Надежда Евгеньевна
  • Мизерова Ольга Владимировна
  • Цапенко Ирина Владимировна
  • Зуева Марина Владимировна
RU2313312C1
Способ прогнозирования риска развития псевдоэксфолиативной глаукомы 2019
  • Каменских Татьяна Григорьевна
  • Мескини Мажди Абдо
  • Колбенев Игорь Олегович
  • Веселова Екатерина Викторовна
RU2710885C1
Способ комбинированного лечения тяжелых форм вторичной неоваскулярной глаукомы 2019
  • Ходжаев Назрулла Сагдуллаевич
  • Сидорова Алла Валентиновна
  • Белоусова Елена Владимировна
  • Елисеева Мария Алексеевна
  • Смирнова Евгения Александровна
RU2708059C1
Способ профилактики ишемической нейропатии зрительного нерва карбамилированным дарбэпоэтином в эксперименте 2017
  • Пересыпкина Анна Александровна
  • Покровский Михаил Владимирович
  • Левкова Елена Александровна
  • Губарева Виктория Олеговна
  • Покровская Татьяна Григорьевна
  • Шабельникова Анна Сергеевна
  • Никитина Владислава Александровна
  • Кочкарова Индира Султановна
  • Шарапов Михаил Валерьевич
  • Пажинский Антон Леонидович
  • Колесниченко Павел Дмитриевич
  • Автина Татьяна Валерьевна
RU2643579C1
Лечение глазных болезней типа дегенерации желтого пятна, глаукомы и диабетической ретинопатии с помощью лекарственных средств, устраняющих стареющие клетки 2018
  • Хопкинс, Джилл
  • Цуруда, Пэм
  • Чэпмен, Клод
  • Звейгард, Гарри
  • Пун, Ян
  • Маркесс, Даниель
  • Давид, Натаниель
  • Дананберг, Джейми
  • Лаберж, Реми-Мартен
RU2815482C2

Иллюстрации к изобретению RU 2 577 449 C1

Реферат патента 2016 года СПОСОБ МОДЕЛИРОВАНИЯ ТРАНЗИТОРНОЙ ИШЕМИИ СЕТЧАТКИ У КРЫС

Изобретение относится к экспериментальной медицине, а именно к офтальмологии, и может быть использовано для создания модели транзиторной ишемии сетчатки путем создания высокого внутриглазного давления у экспериментальных животных. Способ моделирования транзиторной ишемии сетчатки у крыс предполагает создание повышенного внутриглазного давления. Повышение давления создают нагнетанием воздуха в переднюю камеру глаза под контролем давления. При этом используют устройство, содержащее инъекционную иглу, пневматически связанную гибкими трубками с анероидным манометром и подключенными последовательно ресивером, выполненным в виде манжеты от тонометра, и нагнетателем с клапаном. Воздух нагнетают через канюлю инъекционной иглы. Вкол иглы осуществляют в лимб под углом 25-35 градусов к плоскости, ограниченной лимбом. Далее открытый конец иглы располагают между радужкой и внутренней поверхностью роговицы ближе к последней. Создают давление в передней камере глаза 110-130 мм ртутного столба. Указанное давление сохраняют в течение 20-60 минут. Способ позволяет расширить диапазон моделируемой патологии сетчатки у экспериментальных животных за счет произвольного увеличения возможных степеней транзиторной ишемии сетчатки путем дозирования и контроля подаваемого давления в переднюю камеру глаза; простоте, доступности, экономичности моделирования, обеспечить надежность, воспроизводимость моделирования за счет достижения гарантированной транзиторности создаваемой ишемии путем объективизации дозирования и контроля давления, подаваемого в переднюю камеру глаза. 1 ил., 2 пр.

Формула изобретения RU 2 577 449 C1

Способ моделирования транзиторной ишемии сетчатки у крыс путем создания повышенного внутриглазного давления, отличающийся тем, что повышение давления создают нагнетанием воздуха в переднюю камеру глаза под контролем давления с помощью устройства, содержащего инъекционную иглу, пневматически связанную гибкими трубками с анероидным манометром и подключенными последовательно ресивером, выполненным в виде манжеты от тонометра, и нагнетателем с клапаном; при этом воздух нагнетают через канюлю инъекционной иглы, осуществляя ее вкол в лимб под углом 25-35 градусов к плоскости, ограниченной лимбом, располагая открытый конец иглы между радужкой и внутренней поверхностью роговицы, ближе к последней, и создавая давление в передней камере глаза 110-130 мм ртутного столба, которое сохраняют в течение 20-60 минут.

Документы, цитированные в отчете о поиске Патент 2016 года RU2577449C1

JUNG S.Н., The flavonoid baicalin counteracts ischemic and pxidative insults to retinal cells and lipid peroxidation to brain membranes
Neurochemistry International
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1
Щиток к угледобывающим комбайнам для механизации погрузки штыба и угля, попадающих между грузчиком и рещтачным ставом 1955
  • Петров Л.В.
SU112477A1
ШАБЕЛЬНИКОВА А.С
и др., Протективное действие эритропоэтина при моделировании ишемии-реперфузии сетчатки, Научные ведомости,

RU 2 577 449 C1

Авторы

Киселева Татьяна Николаевна

Чудин Антон Вячеславович

Хорошилова Инна Петровна

Щипанова Александра Ивановна

Слепова Ольга Семеновна

Балацкая Наталья Владимировна

Даты

2016-03-20Публикация

2015-04-21Подача