Прибор для определения параметров газовыделения Российский патент 2017 года по МПК G01N25/20 G01K17/00 G01F1/66 

Описание патента на изобретение RU2620328C1

Изобретение относится к области измерительной техники, а именно к способам определения термической стабильности жидких однофазных и двухфазных, а также гетерогенных систем. Изобретение предназначено для определения максимальной скорости газовыделения (Wmax), температуры начала экзотермических процессов (Тн), индукционного периода (Тинд), суммарных объемов выделившихся газов (Vг) при атмосферном давлении и может быть использовано в химической и нефтехимической промышленности на любых предприятиях и заводах, где возможно попадание горючих веществ в смеси с окислителем на высокотемпературные операции.

В настоящее время применяются следующие типы калориметров: адиабатические, изотермические, диатермические, теплопроводящие, поточные. Однако все выше перечисленные калориметры направлены, в основном, на исследование твердых веществ.

Наиболее распространены калориметры переменной температуры, в которых количество теплоты Q определяется по изменению температуры калориметрической системы:

Q=W*ΔT,

где W - тепловое значение калориметра (т.е. количество теплоты, необходимое для его нагревания на 1 К), найденное предварительно в градуировочных опытах, ΔT - изменение температуры во время опыта.

За основу взят обычный калориметр, нагрев образцов в котором происходит в воздушном термостате.

Этот способ является одним из самых эффективных, недорогих и технически упрощенных, поэтому он был взят за основу.

Недостатком известного способа термического анализа является невозможность определения объема выделившихся в ходе реакции газообразных продуктов реакции

Технический результат изобретения - повышение точности одновременного измерения скорости потоков газовых продуктов, а также возможность одновременного отбора как жидких, так и газовых проб.

Технический результат достигается тем, что прибор для определения параметров газовыделения содержит воздушный термостат с электронагревателем и терморезистором, внутрь термостата установлены две ячейки из нержавеющей стали, выполненные с возможностью заливания в них жидких образцов, ячейки снабжены герметично закрывающимися крышками, в которые вмонтированы термопары, при этом крышки имеют отверстия для соединения с трубками газоотвода, которые соединены с ультразвуковыми измерителями скорости истечения газа с установленными пьезоэлементами и газовым переключателем на выходе, блок управления, состоящий из аналого-цифрового преобразователя, ПИД-регулятора, контроллера, интерфейса RS232/USB и блока питания, при этом термопары подключены к входу аналого-цифрового преобразователя, выход которого подключен к входу контроллера, выход которого подключен через интерфейс RS232/USB к персональному компьютеру, терморезистор подключен к входам аналого-цифрового преобразователя и ПИД-регулятора, выход которого соединен с электронагревателем, ультразвуковой измеритель скорости истечения газа подключен через интерфейс RS232/USB к персональному компьютеру, персональный компьютер выполнен на базе процессора, выполненного с возможностью: визуализации данных эксперимента в реальном времени, регистрации данных в файл, просмотра файлов экспериментов.

Для определения объема выделившихся газов использован ультразвуковой датчик измерения скорости истечения газов, что позволяет избавиться от погрешности измерений, связанной с хемосорбцией выделяющихся газов.

Признаки и сущность заявленного изобретения поясняются в последующем детальном описании, иллюстрированном чертежами, где показано следующее.

На фиг. 1 представлен прибор для определения параметров газовыделения, где:

1, 2 - ячейки;

3 - воздушный термостат;

4 - термопара;

5 - газовая трубка;

6 - ультразвуковой измеритель скорости истечения газа;

7 - пьезоэлемент;

8 - газовый переключатель;

9 - блок управления;

10 - персональный компьютер;

11 - электронагреватель;

12 - терморезистор.

На фиг. 2 представлена схема блока управления, где показано:

13 - АЦП

14 - Контроллер

15 - ПИД-регулятор

16 - Блок питания

17 - Интерфейс RS 232/USB.

На фиг. 3 показана блок-схема программы для ЭВМ-реализующей функции процессора, где:

18 - RS 232/USB-интерфейс

19 - Парсер

20 - Блок ввода параметров эксперимента

21 - Блок формирования строки параметров эксперимента

22 - Блок формирования строковой таблицы показаний датчиков

23 - Блок преобразования показаний датчиков

24 - Библиотека калибровочных коэффициентов

25 - Блок учета датчика свободных концов

26 - Формирование строковой таблицы преобразованных показаний датчиков и запись ее в файл

27 - Блок визуализации показаний датчиков.

Заявленный прибор для определения параметров газовыделения работает следующим образом:

Исследуемый образец помещается в одну из ячеек из нержавеющей стали объемом 2 мл (1), во вторую (2) - инертный при условиях исследования образец сравнения равной массы с близкой теплоемкостью. Каждая ячейка снабжена парой термопар (4), расположенной на разной высоте, для измерения температуры в образце и газовой фазе. С помощью АЦП (13) сигналы с термопар преобразовываются в цифровые показания в мВ, контроллер (14) в свою очередь преобразует строки данных и обеспечивает связь с ЭВМ через интерфейс RS 232/USB (17). Также крышка ячейки имеет отверстие для газоотвода, соединенного газовой трубкой (5) с одноканальным ультразвуковым измерителем скорости истечения газа (6). Принцип действия ультразвукового измерителя скорости истечения газа основан на измерении зависящего от расхода того или иного акустического эффекта, возникающего при прохождении ультразвуковых колебаний через контролируемый поток газа. В таких расходомерах ультразвуковые колебания, создаваемые пьезоэлементами (7), направляются по потоку газа и против него. Разность времен прохождения Δτ ультразвуковыми импульсами расстояния между излучателем и приемником по потоку и против потока пропорциональна скорости потока. Расходомер по конструктивному исполнению является одноканальным, где каждый пьезоэлемент работает попеременно в режиме излучателя и приемника, что обеспечивается системой переключателей. Основные трудности использования ультразвукового метода связаны с тем, что скорость ультразвука в среде зависит от физико-химических свойств последней: температуры, давления, и она значительно больше скорости среды, так что действительная скорость ультразвука в движущейся среде мало отличается от скорости в неподвижной среде. Разность времен прохождения Δτ равна 10-6…10-7 с даже при скоростях потока 10…15 м/с, причем измерять Δτ нужно с погрешностью 10-8…10-9 с. Эти обстоятельства обусловливают необходимость применения сложных электронных схем в сочетании с микропроцессорной техникой, обеспечивающих компенсацию влияния перечисленных факторов.

На выходе ультразвукового измерителя скорости истечения газа имеется газовый переключатель (8), который дает возможность отбора проб для анализа химического состава газа. Ячейки помещаются в воздушный термостат (3), снабженный электронагревательным элементом (4), управляемый персональным компьютеров на базе процессора.

Попадая в визуальную среду программы, а именно в блок ввода параметров эксперимента (блок 20), пользователь выбирает режим эксперимента (количество ступеней нагрева, скорость нагрева, временные интервалы), блок формирования строки параметров эксперимента (21) формирует строку, содержащую эти данные, и отправляет в ПИД-регулятор (15) после запуска эксперимента.

ЭВМ в свою очередь получает от контроллера (14) строки данных вида:

t; U1; U2; U3; …Un,

где t - текущее время эксперимента, Ux - показания терморезистора измерения температуры свободных концов в мВ.

Каждая термопара предварительно калибруется, а калибровочные коэффициенты хранятся в библиотеке калибровочных коэффициентов (24), блок преобразования показаний датчиков (23) осуществляет преобразование показаний термопар (мВ) в градусы по шкале Цельсия с помощью функции вида:

А1х1+В1=Т1,

где А1, В1 - коэффициенты преобразования, Т1 - вычисленная температура в градусах Цельсия, x1 - соответствующее показание термопар в мВ.

Так как температура термопарами регистрируется относительно их свободных концов, чтобы получить истинную температуру, к рассчитанным значениям прибавляется значение температуры свободных концов, эта операция производится блоком учета датчика свободных концов (25):

Т1к=Тсв.к.+Т1.

Формирование строковой таблицы преобразованных показаний датчиков и запись ее в файл производятся в блоке 26. Результаты вычисленных значений построчно записываются в файл, выводятся на экран монитора, как в виде числовых значений на текущий момент, так и в виде точки на временной диаграмме в блоке визуализации показаний датчиков (27) визуальной среды программы.

Таким образом достигается технический результат изобретения, выражающийся в повышении точности одновременного измерения скорости потоков газовых продуктов, а также возможность одновременного отбора как жидких, так и газовых проб.

В качестве АЦП можно использовать, например, серийный блок ICP.COMI-7019R.

В качестве ультразвукового измерителя скорости истечения газа можно использовать, например, серийный датчик ONICON F-4000.

В качестве контроллера можно использовать, например, серийный блок ICP.COMI-7188.

Похожие патенты RU2620328C1

название год авторы номер документа
Прибор для определения параметров экзотермических процессов при давлении выше атмосферного 2020
  • Зачиняев Геннадий Михайлович
  • Скворцов Иван Владимирович
  • Белова Елена Вячеславовна
  • Никитина Юлия Владимировна
RU2754002C1
ТЕЛЕМЕТРИЧЕСКАЯ СИСТЕМА КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ТРАНСПОРТНОГО СРЕДСТВА 2018
  • Жигулов Константин Евгеньевич
  • Щелоков Илья Сергеевич
  • Закиров Ринат Жэвдэтович
  • Закиров Жэвдэт Кадырович
RU2716964C1
Контроллер магнитного поля 2023
  • Бизин Михаил Анатольевич
  • Исаев Николай Павлович
  • Баранов Сергей Александрович
  • Мельников Анатолий Романович
  • Вебер Сергей Леонидович
RU2799103C1
МОБИЛЬНЫЙ ИСПЫТАТЕЛЬНЫЙ КОМПЛЕКС 2005
  • Балицкий Вадим Степанович
  • Грубый Сергей Витальевич
  • Пятницин Александр Иванович
  • Вергелис Николай Иванович
RU2297531C1
СПОСОБ ГРАДУИРОВКИ СЕНСОРА ГАЗА 2007
  • Симаков Вячеслав Владимирович
  • Ворошилов Александр Сергеевич
  • Кучеренко Николай Иванович
  • Якушева Ольга Владимировна
  • Кисин Владимир Владимирович
RU2341790C1
БЛОК АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ (БАР) 2010
  • Мякишев Дмитрий Владимирович
  • Тархов Юрий Андреевич
  • Столяров Константин Алексеевич
  • Учайкин Николай Николаевич
RU2457530C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ 2012
  • Мартюшев Никита Владимирович
  • Мельников Александр Григорьевич
  • Петренко Юрий Николаевич
  • Семенков Илья Владимирович
  • Солдатов Алексей Иванович
RU2516036C1
Ветеринарный ультразвуковой эхоостеометр для оценки физических характеристик костей скелета животных при их функциональных и патологических изменениях 2021
  • Савинков Алексей Владимирович
  • Орлов Матвей Михайлович
RU2779304C1
ЛАЗЕРНЫЙ ОПТИКО-АКУСТИЧЕСКИЙ ГАЗОАНАЛИЗАТОР И РЕЗОНАНСНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПТИКО-АКУСТИЧЕСКИЙ ДЕТЕКТОР 2020
  • Шерстов Игорь Владимирович
RU2748054C1
СПОСОБ АНАЛИЗА СТРУКТУРЫ И КОНТРОЛЯ ПРОЧНОСТИ БЕТОНА СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Анпилов Сергей Михайлович
  • Волков Юрий Вениаминович
  • Мурашкин Геннадий Васильевич
  • Мурашкин Василий Геннадиевич
  • Рыжков Андрей Сергеевич
RU2441234C1

Иллюстрации к изобретению RU 2 620 328 C1

Реферат патента 2017 года Прибор для определения параметров газовыделения

Изобретение относится к области измерительной техники, а именно к способам определения термической стабильности жидких однофазных и двухфазных, а также гетерогенных систем. Изобретение предназначено для определения максимальной скорости газовыделения (Wmax), температуры начала экзотермических процессов (Тн), индукционного периода (Тинд), суммарных объемов выделившихся газов (Vг) при атмосферном давлении и может быть использовано в химической и нефтехимической промышленности на любых предприятиях и заводах, где возможно попадание горючих веществ в смеси с окислителем на высокотемпературные операции. Предложен прибор для определения параметров газовыделения, содержащий воздушный термостат с электронагревателем и терморезистором. Внутрь термостата установлены две ячейки из нержавеющей стали, выполненные с возможностью заливания в них жидких образцов, при этом ячейки снабжены герметично закрывающимися крышками, в которые вмонтированы термопары. Крышки имеют отверстия для соединения с трубками газоотвода, которые соединены с ультразвуковыми измерителями скорости истечения газа с установленными пьезоэлементами и газовым переключателем на выходе. Термопары подключены к входу аналого-цифрового преобразователя, выход которого подключен к входу контроллера, выход которого подключен через интерфейс RS232/USB к персональному компьютеру, а терморезистор подключен к входам аналого-цифрового преобразователя и ПИД-регулятора, выход которого соединен с электронагревателем. Ультразвуковой измеритель скорости истечения газа подключен через интерфейс RS232/USB к персональному компьютеру, который выполнен на базе процессора, выполненного с возможностью: визуализации данных эксперимента в реальном времени, регистрации данных в файл, просмотра файлов экспериментов. Технический результат - повышение точности одновременного измерения скорости потоков газовых продуктов, а также возможность одновременного отбора как жидких, так и газовых проб. 3 ил.

Формула изобретения RU 2 620 328 C1

Прибор для определения параметров газовыделения содержит воздушный термостат с электронагревателем и терморезистором, внутрь термостата установлены две ячейки из нержавеющей стали, выполненные с возможностью заливания в них жидких образцов, ячейки снабжены герметично закрывающимися крышками, в которые вмонтированы термопары, при этом крышки имеют отверстия для соединения с трубками газоотвода, которые соединены с ультразвуковыми измерителями скорости истечения газа с установленными пьезоэлементами и газовым переключателем на выходе, блок управления, состоящий из аналого-цифрового преобразователя, ПИД-регулятора, контроллера, интерфейса RS232/USB и блока питания, при этом термопары подключены к входу аналого-цифрового преобразователя, выход которого подключен к входу контроллера, выход которого подключен через интерфейс RS232/USB к персональному компьютеру, терморезистор подключен к входам аналого-цифрового преобразователя и ПИД-регулятора, выход которого соединен с электронагревателем, ультразвуковой измеритель скорости истечения газа подключен через интерфейс RS232/USB к персональному компьютеру, персональный компьютер выполнен на базе процессора, выполненного с возможностью: визуализации данных эксперимента в реальном времени, регистрации данных в файл, просмотра файлов экспериментов.

Документы, цитированные в отчете о поиске Патент 2017 года RU2620328C1

КАЛОРИМЕТР ПЕРЕМЕННОЙ ТЕМПЕРАТУРЫ (ВАРИАНТЫ) 2013
  • Иноземцев Ярослав Олегович
  • Иноземцев Алексей Вячеславович
  • Жильцов Игорь Александрович
  • Матюшин Юрий Николаевич
  • Воробьев Алексей Борисович
RU2529664C1
КАЛОРИМЕТР ПЕРЕМЕННОЙ ТЕМПЕРАТУРЫ С ИЗОТЕРМИЧЕСКОЙ ОБОЛОЧКОЙ 2008
  • Бывальцев Юрий Александрович
  • Хрипушин Владимир Васильевич
  • Бондарева Лариса Петровна
  • Падалкин Юрий Александрович
  • Григорова Елена Вячеславовна
RU2371685C1
SU 1283553 A2, 15.01.1987
US 20030058918 A1, 27.03.2003.

RU 2 620 328 C1

Авторы

Мясоедов Борис Федорович

Белова Елена Вячеславовна

Дживанова Заяна Викторовна

Скворцов Иван Владимирович

Даты

2017-05-24Публикация

2016-06-29Подача