СПОСОБ ФОРМИРОВАНИЯ 3D МИКРОСТРУКТУР КРЕМНИЯ МЕТАЛЛ-СТИМУЛИРОВАННЫМ ТРАВЛЕНИЕМ Российский патент 2017 года по МПК H01L21/308 

Описание патента на изобретение RU2620987C1

Изобретение относится к области микроэлектроники, в частности к технологии создания 3D микроструктур кремния, являющихся элементной базой функциональной микроэлектроники, металл-стимулированным травлением с использованием локально расположенных масок Ni.

Известен способ, согласно которому кремниевые углубления получают способом, который включает две стадии, на первой из которых выдержку подложки кремния длительностью от 10 до 30 минут осуществляют в водном растворе фтористоводородной кислоты и соли металла при содержании, способном химически осаждать металл на поверхность кремния, а на второй, следующей за первой, во втором растворе, содержащем фтористоводородную кислоту 6,6 vol. % и перекись водорода 2,4 vol. % длительностью от 10 до 30 минут [1].

Недостатком данного метода является необходимость удаления нанонитей кремния.

Известен способ, по которому проводят металл-стимулированное травление кремния в растворе Н2О2, HF и деионизованной воды с использованием тонкой пленки никеля, нанесенной на поверхности пирамид Si методом магнетронного распыления для создания черного кремния [2].

Недостатком данного способа является необходимость формирования пирамид Si.

Наиболее близким является способ, заключающийся в том, что на подложке монокристаллического кремния р-типа-проводимости с кристаллографической ориентацией поверхности (100) с удельным сопротивлением 7 Ом⋅см методом «взрывной» литографии осаждают маски металла Pt/Ti различной формы, включая точки, сетки, линии и т.д. в диапазоне размеров от 10 до 100 нм. Покрытая металлом пластина погружается в раствор H2O2-HF на 15-60 секунд [3]. Недостатком данного способа является высокая стоимость маски металла Pt/Ti, осаждаемой на поверхность полупроводника.

Задачей изобретения является уменьшение стоимости технологии создания 3D структур кремния с использованием метода металл-стимулированного травления.

Способ формирования 3D структур кремния металл-стимулированным травлением заключается в формировании локально расположенных пустот в кремнии травлением длительностью от 5 до 60 минут при температурах от 20 до 80°С монокристаллического кремния с кристаллографической ориентацией поверхности пластины (100) р-типа-проводимости в местах, покрытых никелем, в растворе, содержащем плавиковую кислоту, перекись водорода, отличается от прототипа тем, что удельное сопротивление пластин р-типа-проводимости, покрытых локально расположенной маской Ni, находится в диапазоне от 0,001 Ω⋅см до 1 Ω⋅см, раствор для травления содержит деионизованную воду, объем которой составляет 10/13 часть раствора для травления HF : H2O2 : Н2О с соотношением компонентов 2:1:10 соответственно.

Локально расположенные пленки никеля толщиной 50 нм и площадью 50×50 мкм, 100×100 мкм и 500×500 мкм являются необходимым условием для решения задачи, поскольку замена Ti/Pt на Ni способствует снижению стоимости и возможности формирования 3D структур кремния с аспектным соотношением от 4,56⋅10-5 до 5,2⋅10-2. Толщина пленки Ni, равная 50 нм, способствует формированию пустот в кремнии глубиной от 22,8 при Т=25°С до 2,6 мкм при Т=75°С. Уменьшение толщины пленки Ni позволит сформировать пустоты меньшей глубины. Удельное сопротивление пластины кремния в диапазоне от 0,001 Ω⋅см до 1 Ω⋅см является необходимым условием для решения задачи, поскольку при значениях ρ, превышающих 1 Ω⋅см, аспектное соотношение будет ниже 4,56⋅10-5, вследствие меньшей концентрации основных носителей заряда h+. Добавка 10/13 части воды в раствор способствует уменьшению концентрации Н2О2 и HF, вследствие чего обеспечивается равномерное растворение кремния.

Способ выполняется следующим образом. Очищенную по стандартной методике подложку кремния р-типа-проводимости с кристаллографической ориентацией поверхности (100) с удельным сопротивлением от 0,001 до 1 Ω⋅см и с локально расположенной маской Ni помещают во фторопластовую ячейку для жидкостного химического травления в растворе следующего состава: 2 части плавиковой кислоты HF (40%); 1 часть перекиси водорода Н2О2 (30%); 10 частей деионизованной воды до образования пустот в кремнии глубиной от 22,8 до 560 нм при температуре обработки 25°С, от 1,77 до 2,6 мкм при температуре обработки 75°С вследствие протекания окислительно-восстановительных реакций на поверхности Si. После этого пластина кремния промывается в этиловом спирте и высушивается на воздухе.

Пример конкретного выполнения. Данный способ позволяет формировать 3D структуры кремния с аспектным соотношением от 4,56⋅10-5 до 5,2⋅10-2, заключается в том, что на пластине кремния, легированной бором, с кристаллографической ориентацией поверхности (100) с удельным сопротивлением от 0,001 до 1 Ом⋅см методом металл-стимулированного травления с использованием Ni площадью 50×50 мкм2, 100×100 мкм2, 500×500 мкм2 толщиной 50 нм в растворе HF : H2O2 : H2O (2:1:10), при температуре от 20 до 80°С в течение времени от 5 до 60 мин формируется слой кремниевых нитей, растворяемых с ростом длительности и температуры травления, вследствие протекающих окислительно-восстановительных реакций на поверхности Si, причем аспектное соотношение строго определяется толщиной пленки Ni.

Процесс травления с использованием никеля является экономически выгодным процессом, так как позволяет заменить дорогостоящие благородные металлы и удешевить технологию создания кремниевых 3D структур.

Источники информации

[1] Патент США 8,193,095 В2, опубликован 05.06.2012.

[2] Патент Китая 102931277 А, опубликован 13.02.2013.

[3] Патент США 8,486,843 В2, опубликован 16.07.2013.

Похожие патенты RU2620987C1

название год авторы номер документа
СПОСОБ ФОРМИРОВАНИЯ НИТЕЙ КРЕМНИЯ МЕТАЛЛ-СТИМУЛИРОВАННЫМ ТРАВЛЕНИЕМ С ИСПОЛЬЗОВАНИЕМ СЕРЕБРА 2016
  • Воловликова Ольга Вениаминовна
  • Дронов Алексей Алексеевич
  • Гаврилов Сергей Александрович
  • Сыса Артем Владимирович
RU2624839C1
ТРЕХМЕРНО-СТРУКТУРИРОВАННАЯ ПОЛУПРОВОДНИКОВАЯ ПОДЛОЖКА ДЛЯ АВТОЭМИССИОННОГО КАТОДА, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И АВТОЭМИССИОННЫЙ КАТОД 2012
  • Евлашин Станислав Александрович
  • Рахимов Александр Турсунович
  • Степанов Антон Сергеевич
  • Пилевский Андрей Александрович
  • Кривченко Виктор Александрович
  • Пащенко Павел Владимирович
  • Манкелевич Юрий Александрович
  • Поройков Александр Юрьевич
RU2524353C2
СПОСОБ ИЗГОТОВЛЕНИЯ МАТРИЦЫ АВТОЭМИССИОННЫХ ТРУБЧАТЫХ КАТОДОВ НА ОСНОВЕ ЛЕГИРОВАННЫХ НАНОКРИСТАЛЛИЧЕСКИХ АЛМАЗНЫХ ПЛЕНОК 2022
  • Вихарев Анатолий Леонтьевич
  • Богданов Сергей Александрович
  • Охапкин Андрей Игоревич
  • Ухов Антон Николаевич
  • Филатов Евгений Александрович
RU2784410C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОПРОНИЦАЕМОЙ МЕМБРАНЫ 2008
  • Улин Владимир Петрович
  • Солдатенков Федор Юрьевич
  • Бобыль Александр Васильевич
  • Конников Самуил Гиршевич
  • Терещенко Геннадий Федорович
  • Федоров Михаил Петрович
  • Чусов Александр Николаевич
RU2365403C1
СПОСОБ ИЗГОТОВЛЕНИЯ КРЕМНИЙ НА ИЗОЛЯТОРЕ СТРУКТУР 1995
  • Хаустов Владимир Анатольевич
RU2096865C1
СПОСОБ ПОЛУЧЕНИЯ ОТВЕРСТИЙ В МОНОКРИСТАЛЛИЧЕСКИХ ПЛАСТИНАХ КРЕМНИЯ 2014
  • Небольсин Валерий Александрович
  • Дунаев Александр Игоревич
  • Долгачев Александр Александрович
  • Шмакова Светлана Сергеевна
RU2569551C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ПОЛУПРОВОДНИКОВОГО ГАЗОВОГО СЕНСОРА 1991
  • Чистяков В.В.
  • Палашов В.Н.
  • Мокроусов Н.Е.
  • Винке А.Л.
SU1829751A1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ ОГРАНИЧИТЕЛЬНЫХ ДИОДОВ СВЕРХВЫСОКОЧАСТОТНОГО ДИАПАЗОНА ГРУППОВЫМ МЕТОДОМ 2011
  • Филатов Михаил Юрьевич
  • Аверкин Сергей Николаевич
  • Колмакова Тамара Павловна
RU2452057C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ КРИСТАЛЛОВ 1992
  • Коломицкий Николай Григорьевич
  • Астапов Борис Александрович
RU2012094C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ КРИСТАЛЛОВ 1992
  • Коломицкий Николай Григорьевич
  • Астапов Борис Александрович
RU2035086C1

Реферат патента 2017 года СПОСОБ ФОРМИРОВАНИЯ 3D МИКРОСТРУКТУР КРЕМНИЯ МЕТАЛЛ-СТИМУЛИРОВАННЫМ ТРАВЛЕНИЕМ

Изобретение относится к области микроэлектроники, в частности к технологии создания 3D микроструктур кремния, являющихся элементной базой функциональной микроэлектроники, металл-стимулированным травлением с использованием локально расположенных масок Ni. В состав раствора для травления кремния входит фтористоводородистая кислота, перекись водорода и деионизованная вода в объемном соотношении 2:1:10. Процесс травления с использованием никеля является экономически выгодным процессом, так как позволяет заменить дорогостоящие благородные металлы и удешевить технологию создания кремниевых 3D структур.

Формула изобретения RU 2 620 987 C1

Способ формирования 3D структур кремния металл-стимулированным травлением, заключающийся в формировании пустот химическим травлением монокристаллического кремния с кристаллографической ориентацией поверхности пластины (100) р-типа-проводимости в местах, покрытых пленкой металла-катализатора, в растворе, содержащем плавиковую кислоту, перекись водорода, отличающийся тем, что удельное сопротивление пластин р-типа-проводимости, покрытых локально расположенной маской Ni, находится в диапазоне от 0,001 Ω⋅см до 1 Ω⋅см, раствор для травления содержит деионизованную воду, объем которой составляет 10/13 часть раствора для травления HF:H2O2:H2O с соотношением компонентов 2:1:10 соответственно.

Документы, цитированные в отчете о поиске Патент 2017 года RU2620987C1

US 8486843 B2, 16.07.2013
US 8193095 B2, 05.06.2012
Токарный резец 1924
  • Г. Клопшток
SU2016A1
US 6790785 B1, 14.09.2004
US 8815104 B2, 26.08.2014
US 8278191 B2, 02.10.2012
СПОСОБ ИЗГОТОВЛЕНИЯ МИКРОМЕХАНИЧЕСКОГО ИНЕРЦИАЛЬНОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ЕМКОСТНОГО ТИПА 2001
  • Мокров Е.А.
  • Зеленцов Ю.А.
  • Козин С.А.
  • Акимов И.Г.
  • Федулов А.В.
  • Чистякова Т.Г.
  • Ануфриев Ю.С.
RU2207658C2

RU 2 620 987 C1

Авторы

Воловликова Ольга Вениаминовна

Гаврилов Сергей Александрович

Сыса Артем Владимирович

Даты

2017-05-30Публикация

2016-07-22Подача