Изобретение относится к способу электрохимического окисления церия (III) в нитратных растворах при переработке концентратов редкоземельных металлов (РЗМ), полученных из различных видов сырья. Изобретение может быть использовано на стадии предварительной переработки концентрата РЗМ с целью выделения из него церия методом электроокисления с последующей экстракцией или осаждением карбоната или оксалата церия.
Способ электрохимического окисления церия при переработке концентратов РЗМ характеризуется тем, что с целью упрощения и удешевления процесса, повышения выхода по току и скорости окисления церия, а также снижения расхода электроэнергии процесс электрохимического окисления церия проводят в анодной камере двухкамерного электролизера, отделенной от катодной камеры пористой керамической диафрагмой, изготовленной плазмохимическим методом, с заданными размерами и определенной структурой пор, предотвращающими попадание окисленного церия из анодной камеры в катодную, но не препятствующими миграции нитрат-ионов в анодную камеру. Процесс проводят с нерастворимыми титановыми анодами с активирующим покрытием из диоксида иридия по алгоритму, определяемому рабочей температурой и зависимостью плотности тока на аноде и процесса от степени окисления церия. Предпочтительная плотность тока на аноде 6-3 А/дм2, а рабочая температура-35-47°С.
Известен способ электрохимического окисления церия (III) в азотно-кислом растворе [Седнева Т.А., Тихомирова И.А. Окисление церия в мембранном электролизере. - Апатиты. 2002. - 11 с. - Деп. в ВИНИТИ 12.08.2002, №1475-В2002]. Окисление церия проводили в проточном электролизере фильтр-прессного типа с анионообменной мембранной МА-41, разделяющей анодное и катодное пространство. В качестве нерастворимого анода использовали платину, в качестве материала катода - титан. Оптимальная плотность тока для окисления церия (III) с концентрацией церия в растворе порядка 60-65 г/л в электролите без перемешивания составляет 5,0-7,0 А/дм2 при интегральном выходе по току не более 60%.
Основными недостатками указанного способа являются невысокий выход по току, а также высокие затраты при использовании дорогостоящей платины как одноразовые, так и связанные с ее медленным электрохимическим растворением в кислых растворах. [Чемоданов А.Н., Колотыркин Я.М., Дембровский М.А. - М.: Электрохимия, 1970. - Т. 6. - Вып. 4. - С. 460-467].
Известен способ получения нитрата церия (+IV) электрохимическим окислением нитрата церия (III) [Поздеев С.С., Кондратьева Е.С., Губин А.Ф. Электрохимическое получение ионов церия (IV) для применения в процессе очистки сточных вод от органических примесей// Гальванотехника и обработка поверхности, 2014. - Т. 22. - №4. - С. 37-39]. Согласно этому способу получение церия (+IV) в нитратном растворе осуществляют в анодной камере двухкамерного электролизера с анионообменной мембраной МА-41 ИЛ, разделяющей анодное и катодное пространство. В качестве анода используют платинированный ниобий. Состав электролита в анодной камере - раствор нитрата церия (III) с концентрацией металла 115 г/л, содержащий 10 г/л свободной азотной кислоты. Состав электролита в катодной камере электролизера - раствор азотной кислоты с концентрацией 10 г/л.
Недостатками данного способа является высокое напряжение на ванне за счет низкой концентрации азотной кислоты и значительного сопротивления анионообменной мембраны, что в конечном итоге определяет низкое значение выхода по току и высокие затраты электроэнергии на получение оксида церия.
Известен «Способ получения нитрата церия (+IV) электрохимическим окислением нитрата церия (+III)» по патенту RU 2578717, в котором процесс осуществляют электрохимическим окислением нитрата церия (III) в трехкамерном электролизере с двумя катодными и одним анодным пространством, при плотности тока 1-3 А/дм2 на аноде из платинированного ниобия. Две катодные камеры отделены от анодной камеры ионообменными мембранами: одна катионообменной (МК-40Л), а вторая анионообменной (МА-41 ИЛ). Применение двух катодных камер с разными мембранами позволяет поддерживать концентрацию свободной азотной кислоты в анолите в пределах 8-12 г/л, что предотвращает растворение платинового покрытия на аноде.
Недостатками данного способа является высокое напряжение в электролизере за счет низкой концентрации азотной кислоты и значительного сопротивления двух мембран - анионообменной и катионообменной, следовательно, высокий удельный расход электроэнергии на окисление церия. Кроме того, при низкой концентрации кислоты существенно снижается скорость окисления церия.
Наиболее близким к заявляемому способу является способ окисления церия (Гасанов А.А, Юрасова О.В. Харламова Т.А., Алафердов А.Ф. Конструкция электролизера для окисления церия. Цветные металлы, №8, 2015 г., С. 50-54), по которому окисление церия проводили в электрохимической ячейке (электрохимическом реакторе МБ-26-21-15К), в корпус которой помещены платинированные титановые аноды и титановый катод, а электродные пространства разделены керамической диафрагмой. Электрохимическая ячейка обладает системой раздельной циркуляции анолита и католита, а также регулирования давления в электродных камерах для предотвращения миграции ионов. С целью снижения скорости восстановления азотной кислоты температура в католите поддерживалась не выше 18°С путем ее вывода из электролизера и охлаждения проточной водой. Окисление церия проводили из растворов, содержащих 200-380 г/л РЗО и 50-100 г/л HNO3. Достигнутые показатели при лабораторных испытаниях - степень окисления церия - до 99,0% при расходе электроэнергии 0,6-1,0 кВт/кг СеО2.
Недостатки известного способа (прототипа):
- сложность конструкции электрохимической модульной ячейки, которая определяет сложность управления технологическим процессом окисления церия, особенно при переходе к промышленному исполнению;
- использование в качестве керамической диафрагмы наноструктурированной ультрафильтрационной керамики, изготовленной путем экструзии, с неконтролируемыми размерами пор, что требует постоянного контроля и регулирования давления в анодных и катодных камерах электролизера;
- значительный расход теплоносителя для охлаждения катодной ячейки до 18°С;
- высокие затраты на изготовление и использование платинированных анодов;
- низкая скорость окисления церия и выход по току.
В предлагаемом способе технический результат достигается за счет того, что с целью упрощения процесса, повышения выхода по току и скорости окисления церия, процесс электрохимического окисления церия при переработке концентрата РЗМ проводят в анодной камере двухкамерного электролизера, отделенной от катодной камеры пористой керамической диафрагмой, изготовленной плазмохимическим методом, с заданными размерами и определенной структурой пор, предотвращающими попадание окисленного церия из анодной камеры в катодную, но не препятствующими миграции нитрат-ионов в анодную камеру, с нерастворимыми титановыми анодами с активирующим покрытием из диоксида иридия по алгоритму, определяемому взаимной зависимостью плотности тока на аноде от степени окисления церия. Плотность тока на аноде 7-2 А/дм2 (предпочтительно 6-3 А/дм2), а рабочая температура в анодном пространстве 35-47°С. Если все время оставлять высокую плотность тока, то на аноде будет осуществляться выделение кислорода, т.е.протекать побочная реакция, и выход по току упадет.
Изготовление керамической пористой мембраны производится плазмохимическим способом из корундового порошка с частицами сферической формы и определенного размера. За счет того, что генератор потока частиц корунда направляется под определенным углом к вращающейся цилиндрической подложке образуется конусообразная структура пор, которая способствует определенному направлению движения частиц электролитов. Движение нитрат-ионов из катодной камеры в анодную через диафрагму обеспечивается разностью уровней католита и анолита в электролизере, определенной плотностью растворов и размером пор. Этот же переток раствора электролита из катодной камеры в анодную через диафрагму обеспечивает минимальное попадание катионов окисленного церия в катодную камеру и восстановление их на катоде, что обеспечивает высокий выход по току. Кроме того, число переноса ионов водорода существенно больше, чем у ионов церия, и перенос тока в кислом электролите осуществляется миграцией катионов водорода через диафрагму.
Концентрация азотной кислоты в католите и анолите поддерживается за счет введения кислоты в катодное пространство и регулируется разностью уровней католита и анолита.
Между анодной и катодной камерами перенос электронов осуществляется под действием разности потенциалов в электропроводящей среде. Для этого в анолите поддерживают кислотность не ниже 40 г/л (это предел, иначе появятся осадки). В католите кислотность должна быть не ниже, чем в анолите, но плотность чистой кислоты-католит меньше плотности анолита (рабочий раствор РЗЭ, где плотность около 1,65 г/дм3), поэтому, чтобы анолит не передавливал в катодную камеру, делают концентрацию в нем кислоты больше (около 100 г/л) и уровень выше, чтобы компенсировать разность плотностей в растворах. Размер поры нельзя делать большим, иначе весь католит будет уходить в анолит протоком насквозь. В итоге рабочий раствор (анолит) будет разбавляться, а расход кислоты будет большой. Поэтому поры в диафрагме такие, чтобы снаружи не пропускать большие ионы церия, а изнутри пропускать маленькие нитрат-ионы.
Изобретение иллюстрируют следующие примеры.
Пример 1 (прототип).
Окисление нитратного раствора РЗМ в количестве 164 литра с концентрацией церия 146,0 г/л осуществляли на установке типа ОКСИРОН, производимой компанией ДЕЛФИН АКВА, основанной на использовании диафрагменных электрохимических реакторов МБ-26-21-15, в котором анодное и катодное пространство разделено ультрафильтрационной керамической диафрагмой. В качестве анода использовали полую водоохлаждаемую трубку из платинированного титана, в качестве катода - титановую трубку. Раствор азотной кислоты из катодной камеры выводили в процессе электролиза из установки и охлаждали с помощью внешнего источника.
Опыты по окислению церия проводили при силе тока 350 А, среднем напряжении на ванне 5,6 В. Плотность тока на аноде была постоянной равной 3,5 А /дм2. Перепад давления на керамической диафрагме между анодной и катодной камерами составлял 2×104 Па и регулировался с помощью стабилизатора давления. Температура анолита составляла 48°С, католита 18-20°С. Концентрацию церия (+IV) в анолите определяли каждый час титрованием раствором соли Мора в присутствии индикатора - наполовину окисленного дифениламин-4-сульфокислоты натриевая соль (ДАС). Выход по току рассчитывали как отношение количества практически окисленного церия за данный отрезок времени к теоретическому, рассчитанному по закону Фарадея.
Проведенный по прототипу опыт показал, что церий в нитратном растворе при вышеуказанных условиях окислился на 99,4% за 20 часов при среднем выходе по току 76,3%. Средняя скорость окисления церия равна 1,2 кг в час. Средний расход электроэнергии составил 1,63 кВт⋅ч на кг церия.
Пример 2 (заявляемый способ).
Окисление церия в нитратном растворе, полученном растворением концентрата РЗМ, проводили в промышленном электролизере с корундовой пористой диафрагмой, изготовленной плазмохимическим методом, и титановыми анодами с активирующим покрытием из диоксида иридия толщиной 6 мкм. Объем анолита для окисления составил 170 л, содержание РЗО - 294 г/л, церия - 144 г/л, азотной кислоты – 80 г/л. Анодную плотность тока в процессе электролиза изменяли от 4,8 до 3,3 А/дм2 в зависимости от равновесной концентрации окисленного церия и температуры анолита для предотвращения выделения на аноде кислорода и поддержания максимального выхода по току при оптимальной производительности. Температуру в анодной и катодной камерах поддерживали внешним охлаждением анолита в пределах 43-47°С. Для предотвращения попадания анолита в катодную камеру разность уровней католита и анолита в электролизере поддерживали с помощью дозированной подачи концентрированного раствора азотной кислоты в катодную камеру. Напряжение в электролизере составляло 6,0-6,9 В.
Результаты испытания показали, что церий в нитратном растворе при вышеуказанных условиях окислился на 99,8% за 14 часов при среднем выходе по току 86,5%. Средняя скорость окисления была равна 1,79 кг в час церия. Средний расход электроэнергии составил 1,38 кВт⋅ч на кг церия.
Пример 3
Окисление церия в нитратном растворе, полученном растворением концентрата РЗМ, проводили в две стадии: сначала в электролизере с титановыми анодами с активирующим покрытием из диоксида иридия и титановым перфорированным катодом без разделения анодного и катодного пространства. Далее, при достижении степени окисления церия более 80%, раствор передавали в двухкамерный электролизер с керамической пористой диафрагмой, изготовленной плазмохимическим способом и титановыми анодами с активирующим покрытием из оксида иридия, и вели процесс согласно предлагаемому способу.
Испытания проводили на растворе объемом 164 л состава: РЗО - 324 г/л, 170 г/л церия, 80 г/л азотной кислоты. Силу тока на первой стадии процесса электролиза изменяли в интервале от 310 до 300 А, анодная плотность тока составляла 6,2-5,3 А/дм2, напряжение на ванне - 3,6-4,2 В, температура электролита 42-44°С. Концентрация азотной кислоты поддерживалась в интервале 85-90 г/л. Время окисления церия до 81,5% составило 8 часов, при среднем выходе по току 85,8.
На второй стадии процесса, проводимого в электролизере с диафрагмой, силу тока изменяли в интервале 390-270 А, анодная плотность тока составляла от 7,0 до 4,8 А/дм2. Температуру в анодной и катодной камерах поддерживали в интервале 44-46°С. Напряжение на ванне составляло 4,8-5,9 В.
В процессе двухстадийного электрохимического окисления церия в нитратном растворе при вышеуказанных условиях степень окисления церия составила 99,7% при среднем выходе по току 88,3%. Средняя скорость окисления церия - 2,9 кг в час при среднем расходе электроэнергии 0,586 кВт⋅ч на кг церия.
Таким образом, заявляемый способ упрощает процесс электрохимического окисления церия при переработке концентратов РЗМ, повышает выход по току и увеличивает скорость окисления церия, а также снижает затраты на осуществление процесса при переработке промышленных концентратов РЗЭ, особенно при использовании двухступенчатого процесса окисления.
название | год | авторы | номер документа |
---|---|---|---|
Способ электроокисления ионов церия (III) | 2018 |
|
RU2673809C1 |
СПОСОБ ПОЛУЧЕНИЯ НИТРАТА ЦЕРИЯ (IV) | 2015 |
|
RU2603642C1 |
СПОСОБ ПОЛУЧЕНИЯ НИТРАТА ЦЕРИЯ (IV) ЭЛЕКТРОХИМИЧЕСКИМ ОКИСЛЕНИЕМ НИТРАТА ЦЕРИЯ (III) | 2015 |
|
RU2578717C1 |
СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА ЦЕРИЯ | 2007 |
|
RU2341459C1 |
ЭЛЕКТРОХИМИЧЕСКАЯ МОДУЛЬНАЯ ЯЧЕЙКА ДЛЯ ОБРАБОТКИ РАСТВОРОВ ЭЛЕКТРОЛИТОВ | 2007 |
|
RU2350692C1 |
СПОСОБ ЭЛЕКТРОМЕМБРАННОЙ РЕГЕНЕРАЦИИ РАСТВОРА СНЯТИЯ КАДМИЕВЫХ ПОКРЫТИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2015 |
|
RU2603522C2 |
СПОСОБ РЕГЕНЕРАЦИИ НИТРАТНО-АММОНИЙНОГО РАСТВОРА СНЯТИЯ КАДМИЕВЫХ ПОКРЫТИЙ | 2020 |
|
RU2750654C1 |
Способ регенерации хроматных растворов пассивирования | 2018 |
|
RU2691791C1 |
СПОСОБ РЕГЕНЕРАЦИИ РАСТВОРА ПАССИВИРОВАНИЯ МЕДИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2021 |
|
RU2764583C1 |
ЭЛЕКТРОЛИЗЁР | 2015 |
|
RU2605751C1 |
Изобретение относится к переработке концентрата РЗМ с выделением из него церия методом электроокисления, а именно к способу электрохимического окисления церия (III) в нитратных растворах при переработке концентратов редкоземельных металлов (РЗМ), с последующей экстракцией или осаждением карбоната или оксалата церия. Способ включает электрохимическое окисление церия в нитратном растворе в двухкамерном электролизере с керамической пористой диафрагмой, изготовленной плазмохимическим методом. При этом используют нерастворимый титановый анод с покрытием из диоксида иридия. Процесс ведут при рабочей температуре 35-47°С и постепенном снижении анодной плотности тока по мере снижения концентрации церия (+III). В катодном пространстве электролизера поддерживают уровень католита выше уровня анолита. Техническим результатом является и упрощение процесса, повышение выхода по току за счет повышения скорости окисления церия. 2 з.п. ф-лы, 3 пр.
1. Способ переработки концентратов редкоземельных металлов с выделением церия, включающий электрохимическое окисление церия до (+IV) в нитратном растворе в двухкамерном электролизере с керамической пористой диафрагмой, разделяющей анодное и катодное пространство, с использованием нерастворимого титанового анода с покрытием из диоксида иридия, причем процесс ведут при рабочей температуре 35-47°C и постепенном снижении анодной плотности тока по мере снижения концентрации церия (+III) c использованием керамической диафрагмы, изготовленной плазмохимическим методом.
2. Способ по п. 1, отличающийся тем, что в катодном пространстве электролизера поддерживают уровень католита выше, чем уровень анолита в анодном пространстве.
3. Способ по п. 1, отличающийся тем, что по мере снижения концентрации церия (+III) снижают анодную плотность тока от 7 до 2 А/дм2.
ГАСАНОВ А.А и др | |||
Конструкция электролизера для окисления церия | |||
Цветные металлы, N8, 2015, c | |||
Устройство для выпрямления многофазного тока | 1923 |
|
SU50A1 |
СПОСОБ ПОЛУЧЕНИЯ НИТРАТА ЦЕРИЯ (IV) ЭЛЕКТРОХИМИЧЕСКИМ ОКИСЛЕНИЕМ НИТРАТА ЦЕРИЯ (III) | 2015 |
|
RU2578717C1 |
Способ обратного выделения йода из угля | 1935 |
|
SU43879A1 |
JP 63053282 A, 07.03.1988 | |||
CN 101781719 A, 21.07.2010 | |||
Лентопротяжный механизм | 1979 |
|
SU775753A1 |
WO 2008141423 A1, 27.11.2008. |
Авторы
Даты
2017-06-27—Публикация
2016-08-10—Подача