ВЫСОКОТЕМПЕРАТУРНЫЙ ИСТОЧНИК ПОВЕРХНОСТНОЙ ИОНИЗАЦИИ Российский патент 2017 года по МПК H01J27/26 

Описание патента на изобретение RU2625728C1

Изобретение относится к вакуумной технике и может быть использовано для получения пучков ионов при разделении изотопов или масс-спектрометрии.

Для получения пучков ионов в целях, к примеру, ядерной медицины используют различные методы ионизации, но наиболее распространенным и простым для реализации является метод поверхностной ионизации. Суть его состоит в том, что при попадании атомов на поверхность металла часть из них испаряется в виде нейтральных частиц, а часть - в виде положительных ионов.

Как известно, степень поверхностной ионизации описывается уравнением Саха-Ленгмюра [Л.Н. Добрецов, М.В. Гомоюнова. Эмиссионная электроника. М.: «Наука», 1966 г., 564 с.]:

где α - степень поверхностной ионизации, равная:

na - доля атомов, испарившихся с поверхности в виде нейтральных атомов; np - в виде положительных ионов; gp/ga - отношение статистических весов ионного и атомного состояния ионизирующихся частиц; ϕ - работа выхода материала, с поверхности которого испаряются атомы; Vi - потенциал ионизации атома.

Из уравнения видно, что степень ионизации тем больше, чем больше разность работы выхода ионизатора и потенциала ионизации атомов (ϕ-Vi), стоящая в числителе экспоненты.

Известен ионный источник с поверхностной ионизацией, выполненный в виде трубки из поликристаллического вольфрама, в котором образование ионов происходит при попадании атомов ионизируемого вещества на разогретую внутреннюю цилиндрическую поверхность трубки [V.N. Panteleev, А.Е. Barzakh, D.V. Fedorov, F.V. Moroz, S. Yu. Orlov, M.D. Seliverstov and Yu. M. Volkov. High temperature ion sources with ion confinement. Rev. Sci. Instr., Vol 73, No. 2, February 2002, 738-740].

Недостатком такого источника поверхностной ионизации является его относительно низкая эффективность, связанная с невысокой степенью поверхностной ионизации на поликристаллическом вольфраме, работа выхода которого составляет (4,5-4,55) эВ [B.C. Фоменко. Эмиссионные свойства материалов. Наукова думка. Киев. 1970. 134 с].

Для повышения эффективности источника необходимо достигать высоких температур на внутренней поверхности вольфрамовой трубки, что, с одной стороны, приводит к снижению срока службы источника, а с другой - требует дополнительных технических средств нагрева, повышая при этом его стоимость.

Наиболее близким к предлагаемому техническому решению является ионный источник с поверхностной ионизацией, выполненный в виде трубки из монокристалла вольфрама, который авторы выбрали в качестве прототипа [В.Н. Пантелеев. Эксперименты на установке ИРИС МЛК ИРИНА. Сессия научного совета ОФВЭ, 23-26 декабря 2014 г.].

Известный источник обладает повышенной по сравнению с источником из поликристаллического вольфрама эффективностью благодаря анизотропии свойств монокристалла. Однако, несмотря на то, что на внутреннюю поверхность трубки выходят грани с достаточно высокими значениями работы выхода (до 5,6 эВ), интегральная работа выхода источника существенно ниже, что связано с присутствием на внутренней поверхности трубки большого числа кристаллографических граней с низкой работой выхода. Для повышения эффективности ионизации указанный источник также требует дополнительных технических средств нагрева или увеличения длины самого ионизатора, что сказывается на его стоимости.

Задача и достигаемый при использовании изобретения технический результат - повышение эффективности источника поверхностной ионизации без увеличения его рабочей температуры и геометрических размеров, что позволяет снизить стоимость получения пучков ионов.

Поставленная задача решается путем выполнения высокотемпературного ионного источника поверхностной ионизации из монокристаллического материала с объемно-центрированной кубической решеткой, снабженного цилиндрическим сквозным отверстием, в котором согласно изобретению сквозное отверстие выполнено вдоль кристаллографического направления [111] монокристалла.

В качестве монокристаллического материала с объемно-центрированной кубической решеткой выбраны материалы из ряда тугоплавких материалов, таких как вольфрам, тантал, молибден и ванадий.

Для дополнительного повышения работы выхода поверхность сквозного отверстия снабжена оксидной пленкой, толщина которой не превышает 1 мкм.

При расположении сквозного отверстия вдоль кристаллографического направления [111] монокристалла на внутреннюю поверхность источника выходит максимальное число граней с индексами {110}, обладающих максимальной работой выхода - (5,2-5,6) эВ.

Как подтверждают проведенные эксперименты, эффективность источника поверхностной ионизации увеличивается по сравнению с прототипом, по меньшей мере, в два раза. В частности, использование заявленного источника позволяет получать эффективность ионизации изотопов Sr более 80% при длине ионизатора до 25 мм, что обеспечивает повышенный выход изотопов и, как следствие, снижение стоимости их производства.

Сведения, подтверждающие возможность осуществления изобретения

Высокотемпературный источник поверхностной ионизации выполнен в виде трубы из монокристаллического вольфрама, полученного методом зонной плавки. Указанный монокристалл вольфрама ориентируют по кристаллографическому направлению [111], вдоль которого выполняют сквозное отверстие цилиндрической формы диаметром 2 мм методом электроэрозионной резки. Затем методом электроэрозионной резки формируют наружную поверхность источника в форме цилиндра диаметром 7 мм, коаксиально расположенного относительно сквозного отверстия. Внутреннюю и наружную поверхность полученной трубки подвергают электрохимической полировке в NaOH. После полировки получившееся изделие подвергают термообработке в атмосфере воздуха при температуре 700°С, формируя тем самым оксидную пленку толщиной до 1 мкм.

Следует отметить, что источник может иметь любую другую форму с точки зрения технологичности конструкции, а также условий эксплуатации, и которая не является существенной с точки зрения достижения технического результата.

В зависимости от конструкции масс-сепаратора возможно формирование наружной поверхности, отличной от цилиндра формы, например в виде прямоугольного параллелепипеда.

В масс-сепараторе заявляемое устройство располагают в непосредственной близости от испаряемой мишени. Нагрев высокотемпературного источника проводят методом прямого пропускания электрического тока. Испаренные атомы мишени, попадая на разогретую внутреннюю поверхность источника, покидают ее в виде ионов, которые впоследствии направляют из облучательного устройства электростатическим полем.

Техническим результатом, достигаемым при использовании заявленного изобретения, является повышенное значение эффективности ионизации и, как следствие, получения радиоизотопов и снижение стоимости их производства на установках с масс-сепаратором.

Похожие патенты RU2625728C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СОВЕРШЕННЫХ КРИСТАЛЛОВ ТУГОПЛАВКИХ МЕТАЛЛОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2008
  • Глебовский Вадим Георгиевич
  • Семенов Валерий Николаевич
  • Божко Сергей Иванович
  • Штинов Евгений Дмитриевич
RU2378401C1
Способ обработки монокристаллов 1983
  • Клауч Дмитрий Николаевич
  • Бик Аркадий Ефимович
  • Ильин Михаил Сергеевич
  • Кущева Марина Евгеньевна
SU1127920A1
ИОНИЗАТОР ПЛОТНЫХ ГАЗОВЫХ ПОТОКОВ НА ОСНОВЕ ЭФФЕКТА КОМПТОНА 2023
  • Воронин Сергей Тимофеевич
RU2821363C1
СПОСОБ ПОЛУЧЕНИЯ ИГЛЫ ИЗ МОНОКРИСТАЛЛИЧЕСКОГО ВОЛЬФРАМА ДЛЯ СКАНИРУЮЩЕЙ ТУННЕЛЬНОЙ МИКРОСКОПИИ 2010
  • Чайка Александр Николаевич
  • Глебовский Вадим Георгиевич
  • Семенов Валерий Николаевич
  • Божко Сергей Иванович
  • Штинов Евгений Дмитриевич
RU2437104C1
МОНОКРИСТАЛЛИЧЕСКИЙ КАРБИД КРЕМНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1998
  • Танино Кития
RU2160227C2
Способ определения остаточных неоднородных напряжений в анизотропных электротехнических материалах рентгеновским методом 2017
  • Пудов Владимир Иванович
  • Драгошанский Юрий Николаевич
RU2663415C1
СПОСОБ ОСУЩЕСТВЛЕНИЯ СТОЛКНОВИТЕЛЬНЫХ ЯДЕРНЫХ РЕАКЦИЙ НА ОСНОВЕ ЭФФЕКТА КАНАЛИРОВАНИЯ ЯДЕРНЫХ ЧАСТИЦ И ИЗЛУЧЕНИЙ В ФАЗАХ ВНЕДРЕНИЯ И ЭНДОЭРАЛЬНЫХ СТРУКТУРАХ 2012
  • Горюнов Юрий Владимирович
RU2540853C2
ТЕРМОЭМИТТЕР ИОНОВ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ 2012
RU2528548C2
ВРАЩАЮЩИЙСЯ АНОД РЕНТГЕНОВСКОЙ ТРУБКИ 1990
  • Дубинин С.Н.
  • Загрязкин В.Н.
  • Ордынцев В.А.
  • Репий В.А.
  • Таубин М.Л.
RU2029408C1
КОНСТРУКЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ МОЛИБДЕНА И/ИЛИ ВОЛЬФРАМА ИЛИ ИХ СПЛАВОВ С ЗАЩИТНЫМ ЖАРОСТОЙКИМ ПОКРЫТИЕМ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2018
  • Колесников Евгений Геннадиевич
  • Выбыванец Валерий Иванович
  • Ястребков Анатолий Алексеевич
  • Афанасьев Николай Григорьевич
  • Солдатенков Сергей Иванович
  • Федосеев Роман Александрович
  • Яшин Максим Сергеевич
RU2702254C1

Реферат патента 2017 года ВЫСОКОТЕМПЕРАТУРНЫЙ ИСТОЧНИК ПОВЕРХНОСТНОЙ ИОНИЗАЦИИ

Изобретение относится к вакуумной технике и может быть использовано для получения пучков ионов при разделении изотопов или масс-спектрометрии. Высокотемпературный источник поверхностной ионизации из монокристаллического материала с объемно-центрированной кубической решеткой снабжен цилиндрическим сквозным отверстием, которое выполнено вдоль кристаллографического направления [111] монокристалла. В качестве монокристаллического материала с объемно-центрированной кубической решеткой могут быть выбраны материалы из ряда тугоплавких материалов, таких как: вольфрам, тантал, молибден, ванадий. Технический результат – повышение эффективности источника поверхностной ионизации без увеличения его рабочей температуры и геометрических размеров. 2 з.п. ф-лы.

Формула изобретения RU 2 625 728 C1

1. Высокотемпературный источник поверхностной ионизации из монокристаллического материала с объемно-центрированной кубической решеткой, снабженный цилиндрическим сквозным отверстием, отличающийся тем, что сквозное отверстие выполнено вдоль кристаллографического направления [111] монокристалла.

2. Источник по п. 1, отличающийся тем, что в качестве монокристаллического материала с объемно-центрированной кубической решеткой выбраны материалы из ряда тугоплавких материалов, таких как: вольфрам, тантал, молибден, ванадий.

3. Источник по п. 1, отличающийся тем, что поверхность сквозного отверстия снабжена оксидной пленкой, толщина которой не превышает 1 мкм.

Документы, цитированные в отчете о поиске Патент 2017 года RU2625728C1

ПАНТЕЛЕЕВ В.Н
Эксперименты на установке ИРИС МЛК ИРИНА
Сессия научного совета ОФВЭ, 23-26 декабря 2014
СПЕКТРОМЕТР ИОННОЙ ПОДВИЖНОСТИ 2005
  • Капустин Владимир Иванович
RU2293977C2
СПОСОБ ПОЛУЧЕНИЯ ПУЧКА ОТРИЦАТЕЛЬНЫХ ИОНОВ 2007
  • Кленов Виктор Сергеевич
RU2368977C2
источник ионов с ПОВЕРХНОСТНОЙ ИОНИЗАЦИЕЙ 0
  • В. В. Калыгин В. М. Прокопьев
SU397984A1
JP 2004342384 A, 02.12.2004
Банных О.А
Новый подход к поверхностной ионизации и дрейф-спектроскопии органических молекул ЖТФ, 2002, том 72, вып.12, с.88-93..

RU 2 625 728 C1

Авторы

Новиков Илья Николаевич

Павлов Андрей Александрович

Пантелеев Владимир Николаевич

Савватимова Ирина Борисовна

Ясколко Антон Андреевич

Даты

2017-07-18Публикация

2016-02-01Подача