Изобретение относится к области энергетики и направлено на энергосбережение путем рационального использования возобновляемых источников тепла и естественного перепада температуры в окружающей среде.
Рациональное использование теплоты возобновляемых источников энергии, таких как грунтовые воды, промышленные стоки, незамерзающие водоемы и т.д., открывает существенный потенциал для энергосбережения. Основной сложностью использования таких источников является их относительно низкий температурный потенциал, не позволяющий напрямую применять эти источник теплоты, например, для обогрева помещений, полов, воды и т.д. Таким образом, актуальной является техническая задача повышения температурного потенциала возобновляемых источников теплоты.
Известно устройство для отопления помещения, использующее в качестве источника теплоты грунтовые воды (RU 2529850, F24J 3/08, 10.10.2014). Устройство включает теплообменник, сопряженный с тепловым насосом, грунтовый теплообменник, установленный в геотермальной скважине, и трубопроводы.
Известно схожее с предыдущим устройство для обеспечения теплом жилых и производственных помещений и для использования полученного тепла для выработки небольшого объема электроэнергии для освещения помещения и работы маломощных потребителей электрического тока (RU 2456512, F24D 11/02, 20.07.2012). Оно состоит из грунтового контура, наружной трубы с заглушенным нижним концом и внутренней трубы с открытым нижним концом, по которым принудительно от насоса циркулирует теплоноситель, поступающий в бойлер для теплообмена с испарительной частью теплового насоса со вторичным теплоносителем, компрессором, теплообменником-конденсатором, и термогенераторов электрического тока. Оба устройства в качестве источника теплоты используют тепло грунтовых вод, а для повышения температурного потенциала этого источника теплоты - компрессионный тепловой насос с фреоном.
Известно, что фреон относится к веществам, оказывающим неблагоприятное влияние на окружающую среду. Известно, что к безопасным для окружающей среды хладагентам относятся вода и спирты. К устройствам, в которых применяются такие хладагенты, относятся абсорбционные и адсорбционные тепловые насосы.
В абсорбционных тепловых насосах высокотемпературный источник теплоты, так называемой высокопотенциальной теплоты, и низкотемпературный источник теплоты, так называемой низкопотенциальной теплоты, передает теплоту к тепловому насосу, который затем передает (или эжектирует) сумму подводимой теплоты от обоих источников при промежуточной температуре. Преобразование теплоты происходит при последовательном поглощении (абсорбции) паров хладагента раствором неорганической соли и их выделении (десорбции), а также испарении и конденсации паров хладагента в испарителе и конденсаторе.
Известен абсорбционный тепловой насос (RU 2164325, F25B 15/06, 20.03.2001), который содержит парогенератор, конденсатор, испаритель и абсорбер, соединенные между собой. К недостаткам этого и других типов абсорбционных тепловых насосов относится наличие движущихся частей, коррозионная активность рабочей жидкости и сложность конструкции.
Упомянутых недостатков лишены адсорбционные тепловые насосы. Принцип их действия аналогичен принципу действия абсорбционных тепловых насосов с той разницей, что поглощение паров хладагента происходит на твердом поглотителе-адсорбенте.
Ближайшим аналогом является адсорбционный тепловой насос (US 7497089, B01J 29/06, 03.03.2009), содержащий адсорбат (хладагент), испаритель, конденсатор и адсорбционно-десорбционную часть с адсорбентом. В качестве адсорбата (хладагента) используют пары воды, а в качестве адсорбента - алюмофосфат SAPO-34. Рабочий цикл адсорбционного теплового состоит в том, что адсорбент, находящийся при температуре 40-45°С, поглощает пары воды, и при этом происходит выделение теплоты. Испарение воды происходит в испарителе при температуре 5-10°С. Таким образом, происходит трансформация теплоты с низким температурным потенциалом в тепло с более высоким температурным потенциалом. Для регенерации адсорбента его нагревают до высокой температуры, наиболее предпочтительно до 60-95°С.
Недостатком является необходимость использования источника теплоты с более высоким температурным потенциалом, чем производимая насосом теплота, для приведения рабочего цикла.
Изобретение решает задачу реализации адсорбционного цикла повышения температурного потенциала возобновляемого источника теплоты с использованием естественной разницы температур в окружающей среде.
Задача решается устройством для реализации адсорбционного цикла повышения температурного потенциала возобновляемого источника теплоты, характеризующимся тем, что оно включает адсорбер, теплообменник, который находится в контакте с гранулами адсорбента, вакуумный кран, емкость с жидким хладагентом и теплообменник, погруженный в жидкий хладагент предпочтительно до середины свой высоты. Емкость с жидким хладагентом и теплообменником является конденсатором и испарителем. Через теплообменники циркулирует теплоноситель, поток которого организован через замкнутый контур, образованный соединительными элементами, клапанами, жидкостными помпами и баками-накопителями.
Сущность изобретения иллюстрируется следующим описанием, примерами и иллюстрациями.
Принципиальная схема устройства для реализации адсорбционного цикла повышения температурного потенциала возобновляемого источника теплоты приведена на чертеже.
В таблице приведена рабочая циклограмма устройства.
Предложено устройство, реализующее замкнутый адсорбционный цикл повышения температурного потенциала, использующее возобновляемый источник тепла и естественный перепад температуры в окружающей среде. Регенерацию адсорбента проводят путем его нагрева от возобновляемого источника тепла, а конденсатор при этом охлаждают до температуры окружающей среды. Температура окружающей среды составляет -50-5°С, преимущественно -25-15°С. Температура возобновляемого источника теплоты составляет 0-35°С, преимущественно 4-20°С. Повышение температурного потенциала происходит на стадии адсорбции, когда испаритель нагревают при помощи возобновляемого источника теплоты и испаряют хладагент, который затем адсорбируется на адсорбенте, в результате чего происходит выделение тепла и разогрев адсорбента.
Устройство (см. чертеж) для реализации предложенного цикла состоит из адсорбера (1), теплообменника (2), который находится в контакте с гранулами адсорбента (3), вакуумного крана (4), емкости (5) с хладагентом (6) и теплообменником (7), погруженным в хладагент. Теплообменник расположен в емкости с жидким хладагентом таким образом, чтобы его поверхность контактировала и с жидкой, и с паровой фазами хладагента. Наиболее предпочтительно, чтобы уровень хладагента достигал середины высоты теплообменника. Емкость с жидким хладагентом и теплообменником является конденсатором и испарителем.
Через теплообменники циркулирует теплоноситель, поток которого организован через замкнутый контур, образованный соединительными трубами, клапанами (8-15), жидкостными помпами (16-18) и баками-накопителями (19-21). Баки-накопители аккумулируют теплоноситель с различной температурой: окружающей среды (19), возобновляемого источника тепла (20), с повышенным температурным потенциалом (21). Особенностью конструкции устройства является то, что контур теплоносителя является единым для потоков с различной температурой, а их разделение по времени и направлению осуществляется за счет переключения клапанов (8-15) и помп (16-18) согласно циклограмме (см. таблицу).
Результатом является достижение последовательного нагрева/охлаждения емкости с хладагентом и нагрева/саморазогрева адсорбера, т.е. достигается технический результат повышения температурного потенциала возобновляемого источника теплоты в замкнутом адсорбционном цикле.
Пример 1
В устройство загружают 500 г адсорбента метанола (Пат РФ 2294796, B01J 20/02, 10.03.2007), представляющего собой пористую матрицу, выбранную из ряда: силикагель, оксид алюминия, вермикулит, поры которой содержат галогенид или нитрат металлов из ряда: кальций, магний, литий, никель или кобальт в количестве не менее 17 мас.%, в емкость для хладагента загружают 2 кг метанола, бак-накопитель 19 поддерживают при температуре окружающей среды -20°С, бак-накопитель 20 приводят в тепловой контакт с источником возобновляемого тепла (сток воды) при температуре 20°С, бак-накопитель 21 теплоизолируют. Теплообменник (7) в емкости расположен таким образом, что уровень жидкого хладагента достигает середины высоты теплообменника.
Согласно циклограмме осуществляют переключение режимов работы устройства в последовательности: «охлаждение», «регенерация», «нагрев» и «адсорбция» и т.д. Температура теплоносителя в баке накопителе 21 повышается и в течение суток достигает 34°С.
Пример 2
Аналогично примеру 1, теплообменник в емкости располагали выше уровня жидкого хладагента. На стадиях 2 и 5 циклограммы не происходило полного нагрева хладагента в емкости, а на стадиях 3 и 4 не происходило его полного охлаждения. Температура теплоносителя в баке-накопителе 21 возрастала несущественно.
Пример 3
Аналогично примеру 1, теплообменник в емкости располагали ниже уровня жидкого хладагента. На стадии 4 не происходило полной конденсации хладагента, температура теплоносителя в баке-накопителе 21 возрастала несущественно.
Пример показывает, что изобретение решает техническую задачу реализации адсорбционного цикла повышения температурного потенциала источника энергии путем использования естественного перепада температур в окружающей среде.
. Обозначения: V0 - кран вакуумный (поз. 4), v1-v8 - клапаны (поз. 8-15), М1-М3 - помпы (поз. 19-21), X - закрыт/выключен, + - открыт/включен.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОВЫШЕНИЯ ТЕМПЕРАТУРНОГО ПОТЕНЦИАЛА ИСТОЧНИКА ТЕПЛА | 2015 |
|
RU2587737C1 |
Теплогенератор | 2021 |
|
RU2772445C1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСТВО, ТЕПЛОТУ ПОВЫШЕННОГО ПОТЕНЦИАЛА И ХОЛОД | 2007 |
|
RU2529917C2 |
СИСТЕМА КЛИМАТ-КОНТРОЛЯ АВТОМОБИЛЯ И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ | 2013 |
|
RU2562003C2 |
СПОСОБ ТЕПЛОХЛАДОСНАБЖЕНИЯ | 2023 |
|
RU2826330C1 |
СИСТЕМА АВТОНОМНОГО ТЕПЛОСНАБЖЕНИЯ ПОТРЕБИТЕЛЕЙ С ИСПОЛЬЗОВАНИЕМ НИЗКОПОТЕНЦИАЛЬНОГО ИСТОЧНИКА ТЕПЛА И ЭЛЕКТРОСНАБЖЕНИЯ ОТ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ | 2007 |
|
RU2350847C1 |
Способ производства полнорационных комбикормов с использованием биогаза и установка для его осуществления | 2022 |
|
RU2797234C1 |
Солнечный адсорбционный холодильник | 1978 |
|
SU747239A1 |
СПОСОБ КОМПЛЕКСНОГО ИЗВЛЕЧЕНИЯ ЦЕННЫХ ПРИМЕСЕЙ ИЗ ПРИРОДНОГО ГЕЛИЙСОДЕРЖАЩЕГО УГЛЕВОДОРОДНОГО ГАЗА С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ АЗОТА | 2014 |
|
RU2597081C2 |
СИСТЕМА АВТОНОМНОГО ЖИЗНЕОБЕСПЕЧЕНИЯ В УСЛОВИЯХ НИЗКИХ ШИРОТ | 2006 |
|
RU2320891C1 |
Изобретение относится к области энергетики и направлено на энергосбережение путем рационального использования возобновляемых источников тепла и естественного перепада температуры в окружающей среде. Устройство для реализации адсорбционного цикла повышения температурного потенциала возобновляемого источника теплоты включает адсорбер, теплообменник, находящийся в контакте с гранулами адсорбента, вакуумный кран, емкость с жидким хладагентом и теплообменник, частично погруженный в жидкий хладагент. Емкость с жидким хладагентом и теплообменником является конденсатором и испарителем. В качестве адсорбента используют композитный адсорбент паров метанола, представляющий собой пористую матрицу, выбранную из ряда: силикагель, оксид алюминия, вермикулит, поры которой содержат галогенид или нитрат металлов из ряда: кальций, магний, литий, никель или кобальт в количестве не менее 17 мас.%, в качестве хладагента-адсорбтива используют спирты. Технический результат заключается в повышении температурного потенциала возобновляемого источника теплоты в замкнутом адсорбционном цикле. 3.з.п. ф-лы, 1 табл., 1 ил.
1. Устройство для реализации адсорбционного цикла повышения температурного потенциала возобновляемого источника теплоты, характеризующееся тем, что включает адсорбер, теплообменник, который находится в контакте с гранулами адсорбента, вакуумный кран, емкость с жидким хладагентом и теплообменник, частично погруженный в жидкий хладагент, при этом в качестве адсорбента используют композитный адсорбент паров метанола, представляющий собой пористую матрицу, выбранную из ряда: силикагель, оксид алюминия, вермикулит, поры которой содержат галогенид или нитрат металлов из ряда: кальций, магний, литий, никель или кобальт в количестве не менее 17 мас.%, в качестве хладагента-адсорбтива используют спирты.
2. Устройство по п. 1, отличающееся тем, что теплообменник погружен в жидкий хладагент предпочтительно до середины свой высоты.
3. Устройство по п. 1, отличающееся тем, что емкость с жидким хладагентом и теплообменником является конденсатором и испарителем.
4. Устройство по п. 1, отличающееся тем, что через теплообменники циркулирует теплоноситель, поток которого организован через замкнутый контур, образованный соединительными элементами, клапанами, жидкостными помпами и баками-накопителями.
US 0007497089 B2, 03.03.2009 | |||
СОРБЕНТ ПАРОВ МЕТАНОЛА И СПОСОБ ПОЛУЧЕНИЯ ХОЛОДА С ПОМОЩЬЮ АДСОРБЦИОННОГО ХОЛОДИЛЬНОГО УСТРОЙСТВА | 2005 |
|
RU2294796C2 |
JP 20061257 A, 13 18.05.2006 | |||
DE 19726286 A1, 02.01.1998 | |||
Устройство для лиофильной сушки термочувствительных материалов | 1985 |
|
SU1334007A1 |
Авторы
Даты
2017-07-28—Публикация
2016-07-26—Подача