СПОСОБ СБОРКИ КОЛЬЦЕВОГО РЕЗОНАТОРА ЛАЗЕРНОГО ГИРОСКОПА (ВАРИАНТЫ) Российский патент 2017 года по МПК G01C19/66 

Описание патента на изобретение RU2626725C1

Изобретение относится к измерительной технике, в частности, к области преобразования параметров вращения в электрический сигнал с помощью гироскопов, в которых чувствительным элементом служит кольцевой лазер, и может быть использовано, например, в системах навигации.

Известен способ сборки кольцевого резонатора лазерного гироскопа, описанный в патенте US 4884283, 28.11.1989, при котором установка зеркал на корпус резонатора производится с поиском точки на зеркале, в которой величина обратного рассеяния от «спекл» картины на нем минимальна, и при этом обеспечивается прохождение лазерного излучения через центр диафрагмы, для получения минимальной величины потерь в кольцевом оптическом резонаторе.

Недостатком данного способа сборки является то, что для получения объективной информации о величине обратного рассеяния необходимо установить зеркало в кольцевой резонатор и затем путем вращений и линейных перемещений осуществлять поиск оптимального положения данного зеркала, одновременно наблюдая как за «спекл» картиной, так и за местом прохождения лазерного луча через диафрагму. Такой поиск оптимального положения совершенно не учитывает других важных характеристик зеркала, в частности анизотропии его рассеивающих свойств, вызванной наличием на поверхности зеркала остаточных дефектов.

Задача, решаемая изобретением, состоит в устранении вышеназванных недостатков, возникающих при известном способе установки зеркал, при этом технический результат, достигаемый заявленным изобретением, заключается в снижении погрешности измерения угловой скорости с помощью лазерного гироскопа за счет уменьшения порога синхронизации встречных волн в кольцевом лазере, что обусловлено снижением обратного рассеяния лазерного излучения зеркалами.

Заявленный технический результат достигается способом сборки кольцевого резонатора, включающим установку зеркал, сварку электродов, электровакуумную обработку и герметизацию. Перед установкой зеркал определяют рассеивающие свойства, по меньшей мере, одного зеркала на основе зарегистрированного трехмерного изображения его поверхности, выделяют анизотропную составляющую рассеяния, вызванную линейно структурированными дефектами, в условиях лазерного излучения, падающего на зеркало под углом, характерным для данного типа резонатора, осуществляют выбор углового положения плоскости падения лазерного луча, соответствующего минимальной величине обратного рассеяния. Затем осуществляют установку, по меньшей мере, одного зеркала на кольцевой резонатор таким образом, что угловое положение, соответствующее минимальной величине рассеяния, совмещается с плоскостью кольцевого резонатора.

Выбор углового положения плоскости падения лазерного луча, соответствующего минимальной величине обратного рассеяния, осуществляют по изображениям поверхности, зарегистрированным с помощью атомно-силового, зондового или модуляционного интерференционного микроскопа.

Кольцевой резонатор включает, по меньшей мере, три зеркала.

Все операции осуществляют для каждого зеркала.

Также заявленный технический результат достигается способом сборки кольцевого резонатора, включающий установку зеркал, сварку электродов, электровакуумную обработку и герметизацию. Перед установкой зеркал определяют рассеивающие свойства, по меньшей мере, одного зеркала на основе зарегистрированного трехмерного изображения его поверхности, выделяют анизотропную составляющую рассеяния, вызванную линейно-структурированными дефектами в условиях лазерного излучения, падающего на зеркало под углом, характерным для данного типа резонатора, осуществляют выбор углового положения плоскости падения лазерного луча, соответствующего минимальной величине полного интегрального рассеяния. Затем осуществляют установку, по меньшей мере, одного зеркала на кольцевой резонатор таким образом, что угловое положение, соответствующее минимальной величине рассеяния, совмещается с плоскостью кольцевого резонатора.

Выбор углового положения плоскости падения лазерного луча, соответствующего минимальной величине полного интегрального рассеяния осуществляют по изображениям поверхности, зарегистрированным с помощью интерферометра белого света или полученным при подсветке поверхности лазерным излучением.

Кольцевой резонатор включает, по меньшей мере, три зеркала.

Все операции осуществляют для каждого зеркала.

Также заявленный технический результат достигается способом сборки кольцевого резонатора, включающий установку зеркал, сварку электродов, электровакуумную обработку и герметизацию. Перед установкой зеркал определяют рассеивающие свойства, по меньшей мере, одного зеркала на основе зарегистрированного трехмерного изображения его поверхности, выделяют анизотропную составляющую рассеяния, вызванную линейно-структурированными дефектами в условиях лазерного излучения, падающего на зеркало под углом, характерным для данного типа резонатора, осуществляют выбор углового положения плоскости падения лазерного луча, соответствующего минимальной величине рассеяния, которая определяется как композиция полного интегрального и обратного рассеяния. Затем осуществляют установку, по меньшей мере, одного зеркала на кольцевой резонатор таким образом, что угловое положение, соответствующее минимальной величине рассеяния, совмещается с плоскостью кольцевого резонатора.

Выбор углового положения плоскости падения лазерного луча, соответствующего минимальной величине обратного рассеяния, осуществляют по изображениям поверхности, зарегистрированным с помощью атомно-силового, зондового или модуляционного интерференционного микроскопа и интерферометра белого света или полученным при подсветке поверхности лазерным излучением.

Кольцевой резонатор включает, по меньшей мере, три зеркала.

Все операции осуществляют для каждого зеркала.

Фиг. 1 - изображение линейно структурированных дефектов отражающей поверхности зеркала.

Фиг. 2 - зависимость величины интегрального рассеяния TIS от линейно структурированных дефектов при повороте на угол α. Горизонтальная штриховая линия соответствует величине TIS от шероховатого рельефа. Вертикальные штриховые линии показывают диапазон углов, при котором величина TIS минимальна.

Фиг. 3 - зависимость величины обратного рассеяния R от линейно структурированных дефектов при повороте на угол α. Горизонтальная штриховая линия соответствует величине R от шероховатого рельефа. Вертикальные штриховые линии показывают диапазон углов, при котором величина R минимальна.

Очевидно, что указанные эффекты проявляются уже при установке одного из зеркал описанным способом, однако максимальный эффект достигается при осуществлении предложенных операций с каждым зеркалом. В связи с чем, целесообразно описывать реализацию устройства на примере операций для каждого зеркала, предназначенного для сборки кольцевого резонатора лазерного гироскопа.

Заявленное изобретение осуществляют следующим образом.

Сперва проводят измерение рельефа отражающей поверхности на установках, измеряющих рассеянное излучение при подсветке поверхности лазерным излучением, с длиной волны и падающим под углом, характерным для данного типа резонатора или посредством атомно-силового или зондового микроскопа или интерферометра белого света. По полученным трехмерным изображениям отражающей поверхности зеркала определяют его рассеивающие характеристики: интегральное или обратное рассеяние, а также угловую анизотропию этих свойств, вызванную линейно структурированными дефектами отражающей поверхности.

Чтобы оценить рассеивающие свойства оптической поверхности зеркала по зарегистрированному изображению его поверхности необходимо выполнить следующие операции:

1. Вычисление зависимости спектральной плотности флуктуаций высоты от пространственных частот:

FT - результат дискретного Фурье-преобразования изображения рельефа;

- комплексно сопряженный Фурье-образ; z - двумерный массив отсчетов высоты с размерностью N×М; h - шаг сканирования поверхности, р=0,1,…N-1; q=0,1,…,М-1; ƒx,p=p/(h⋅N), ƒy,q=q/(h⋅M) - составляющие пространственной частоты.

2. Расчет полного интегрального рассеяния TIS и коэффициента обратного рассеяния R:

где λ=0,6328 мкм - длина волны излучения кольцевого гелий-неонового лазера, υ - расходимость излучения, генерируемого кольцевым лазером, β - угол падения лазерного луча на зеркало,ƒx, ƒy - пространственные частоты:

α - угол между плоскостью падения и направлением заданной оси.

По результатам определения анизотропии рассеивающих свойств зеркала определяют его угловое положение относительно плоскости кольцевого резонатора, соответствующее минимальной величине интегрального или обратного рассеяния или композиции этих рассеяний.

Например, для характеристики интегрального рассеяния, представленной на фиг. 2 минимальной величине TIS соответствует диапазон углов α: от 90 до 115 градусов, а для величины обратного рассеяния существуют два таких диапазона: от 40 до 50 градусов и от 125 до 140 градусов. Как видно из представленных зависимостей, диапазоны углов, соответствующие минимальным величинам интегрального и обратного рассеяния, не совпадают. В том случае, если исходные изображения были зарегистрированы методом, обладающим разрешением по плоскости лучше λcosβ, выбор оптимального углового положения осуществляется по величине обратного рассеяния (4). В случае, если исходные изображения были зарегистрированы методом, обладающим разрешением по плоскости хуже λcosβ, выбор оптимального углового положения осуществляется по величине интегрального рассеяния (3). Вместе с тем два предложенных варианта не являются единственными, так как важен сам принцип установки зеркал по результатам определения их рассеивающих свойств на основе зарегистрированного трехмерного изображения их поверхности и определения минимальной величины рассеяния, которая определяется как композиция обратного и интегрального рассеяния.

В соответствии с выбранным угловым положением, которое определяется либо минимальной величиной интегрального рассеяния, либо минимальной величиной обратного рассеяния, зеркало устанавливается на корпус резонатора, при этом выбранное угловое положение совмещается с плоскостью кольцевого резонатора. Устанавливая таким образом зеркала на корпус резонатора, добиваются линейными перемещениями последнего (сферического) зеркала прохождения лазерного луча через центр диафрагмы, что обеспечивает минимальное значение потерь.

Таким образом, предложенный способ сборки кольцевого резонатора, включая его юстировку, путем установки зеркал на его корпус с определенным угловым положением относительно плоскости распространения лазерного луча позволяет получать информацию об оптимальном угловом положении, в котором величина обратного рассеяния, определяемая остаточными после полировки линейно структурированными дефектами зеркальной поверхности, определяется из измерений его рассеивающих свойств, полученных по трехмерным изображениям поверхности, путем обработки зарегистрированного рельефа методами, описанными, например, в патенте RU 2471146 С1, 27.12.2012. Это позволяет установить зеркало с учетом зависимости (анизотропии) его рассеивающих свойств, вызванных остаточными дефектами полирования и зависящих от угла поворота зеркала относительно его нормальной оси, и соответственно снизить погрешности измерения угловой скорости с помощью лазерного гироскопа за счет уменьшения порога синхронизации встречных волн в кольцевом лазере, достигаемого путем снижения влияния обратного рассеяния.

Похожие патенты RU2626725C1

название год авторы номер документа
Способ выбора резонаторных зеркал датчиков лазерных гироскопов 2023
  • Азарова Валентина Васильевна
  • Чертович Илья Валерьевич
RU2803111C1
Способ комплексной оценки качества оптических зеркал кольцевого лазерного гироскопа методом цифровой обработки сигналов 2019
  • Суханов Сергей Валерьевич
  • Быстров Дмитрий Андреевич
  • Гурлов Дмитрий Владимирович
RU2728730C1
БЛОК ДАТЧИКА ДЛЯ КОНТРОЛЯ ПОВЕРХНОСТИ ОБЪЕКТА И СПОСОБ ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО КОНТРОЛЯ 1998
  • Воллманн Христиан
  • Венерт Лутц
  • Ихлефельд Иоахим
  • Гриесер Ральф
RU2186372C2
СПОСОБ ВЫДЕЛЕНИЯ ЛИНЕЙНО СТРУКТУРИРОВАННОЙ ОСОБЕННОСТИ ПОВЕРХНОСТИ 2011
  • Молчанов Александр Владимирович
  • Чиркин Михаил Викторович
  • Серебряков Андрей Евгеньевич
RU2471146C1
Способ юстировки кольцевых резонаторов лазерных гироскопов 2015
  • Петрухин Евгений Александрович
RU2616348C2
СПОСОБ ЗАПИСИ ИНФОРМАЦИИ ВНУТРИ КРИСТАЛЛА АЛМАЗА 2020
  • Ионин Андрей Алексеевич
  • Кудряшов Сергей Иванович
  • Смирнов Никита Александрович
  • Данилов Павел Александрович
  • Левченко Алексей Олегович
  • Ковальчук Олег Евгеньевич
RU2750068C1
СИСТЕМА НА ОСНОВЕ ОПТИЧЕСКОГО РЕЗОНАТОРА С ОБРАТНОЙ ОПТИЧЕСКОЙ СВЯЗЬЮ ДЛЯ ОБНАРУЖЕНИЯ СЛЕДОВ ГАЗА С ПОМОЩЬЮ РАМАНОВСКОЙ СПЕКТРОМЕТРИИ 2020
  • Качанов, Александр
  • Джаулин, Кевин
  • Столтман, Тим
  • Чолат, Пьер
  • Лонигро, Люсьен
  • Джилетта, Бруно
RU2799732C2
БЕЗОПАСНЫЙ ЛАЗЕРНЫЙ ПРИБОР ДЛЯ ПРИМЕНЕНИЙ ОПТИЧЕСКОГО ЗОНДИРОВАНИЯ 2016
  • Меенх Хольгер
  • Вейгл Александер
  • Герлах Филипп Хеннинг
RU2712939C2
СПОСОБ ФОРМИРОВАНИЯ ЗАДАННОГО ИЗОБРАЖЕНИЯ ВНУТРИ ПРОЗРАЧНОГО ТВЕРДОГО МАТЕРИАЛА ПОСРЕДСТВОМ ИМПУЛЬСНОГО ЛАЗЕРНОГО ЛУЧА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2000
  • Калинин В.В.
  • Антонюк А.С.
  • Воропинов А.В.
  • Бурлакова М.Ю.
  • Дехтяр А.В.
RU2177881C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ МАСКИ ДЛЯ ЛАЗЕРНОЙ УСТАНОВКИ ДЛЯ ПОЛУЧЕНИЯ МИКРОСТРУКТУР 2010
  • Боэгли Шарль
  • Вайссмантель Стеффен
  • Райсс Гюнтер
  • Энгел Энди
  • Боэттчер Рене
  • Стеффен Вернер
RU2580901C2

Иллюстрации к изобретению RU 2 626 725 C1

Реферат патента 2017 года СПОСОБ СБОРКИ КОЛЬЦЕВОГО РЕЗОНАТОРА ЛАЗЕРНОГО ГИРОСКОПА (ВАРИАНТЫ)

Изобретение относится к измерительной технике, в частности, к системам навигации. Предложенные способы сборки кольцевого резонатора включают в себя установку зеркал, сварку электродов, электровакуумную обработку и герметизацию. Перед установкой зеркал определяют рассеивающие свойства, по меньшей мере, одного зеркала на основе зарегистрированного трехмерного изображения его поверхности, выделяют анизотропную составляющую рассеяния, вызванную линейно структурированными дефектами в условиях лазерного излучения, падающего на зеркало под углом, характерным для данного типа резонатора, осуществляют выбор углового положения плоскости падения лазерного луча, соответствующего минимальной величине рассеяния. В качестве указанной минимальной величины рассеяния может быть выбрана величина обратного рассеяния, полного интегрального рассеяния или композиция полного интегрального и обратного рассеяния. Затем осуществляют установку, по меньшей мере, одного зеркала на кольцевой резонатор таким образом, что угловое положение, соответствующее минимальной величине рассеяния, совмещается с плоскостью кольцевого резонатора. Это позволяет снизить погрешности измерения угловой скорости. 3 н. и 10 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 626 725 C1

1. Способ сборки кольцевого резонатора, включающий установку зеркал, сварку электродов, электровакуумную обработку и герметизацию, отличающийся тем, что перед установкой зеркал определяют рассеивающие свойства, по меньшей мере, одного зеркала на основе зарегистрированного трехмерного изображения его поверхности, выделяют анизотропную составляющую рассеяния, вызванную линейно структурированными дефектами в условиях лазерного излучения, падающего на зеркало под углом, характерным для данного типа резонатора, осуществляют выбор углового положения плоскости падения лазерного луча, соответствующего минимальной величине обратного рассеяния, затем осуществляют установку, по меньшей мере, одного зеркала на кольцевой резонатор таким образом, что угловое положение, соответствующее минимальной величине рассеяния, совмещается с плоскостью кольцевого резонатора.

2. Способ сборки по п. 1, отличающийся тем, что выбор углового положения плоскости падения лазерного луча, соответствующего минимальной величине обратного рассеяния, осуществляют по изображениям поверхности, зарегистрированным с помощью атомно-силового, зондового или модуляционного интерференционного микроскопа.

3. Способ сборки по п. 1, отличающийся тем, что кольцевой резонатор выполняют, по меньшей мере, трехзеркальным.

4. Способ сборки по п. 1, отличающийся тем, что все операции осуществляют для каждого зеркала.

5. Способ сборки кольцевого резонатора, включающий установку зеркал, сварку электродов, электровакуумную обработку и герметизацию, отличающийся тем, что перед установкой зеркал определяют рассеивающие свойства, по меньшей мере, одного зеркала на основе зарегистрированного трехмерного изображения его поверхности, выделяют

анизотропную составляющую рассеяния, вызванную линейно структурированными дефектами в условиях лазерного излучения, падающего на зеркало под углом, характерным для данного типа резонатора, осуществляют выбор углового положения плоскости падения лазерного луча, соответствующего минимальной величине полного интегрального рассеяния, затем осуществляют установку, по меньшей мере, одного зеркала на кольцевой резонатор таким образом, что угловое положение, соответствующее минимальной величине рассеяния, совмещается с плоскостью кольцевого резонатора.

6. Способ сборки по п. 5, отличающийся тем, что выбор углового положения плоскости падения лазерного луча, соответствующего минимальной величине полного интегрального рассеяния, осуществляют по изображениям поверхности, зарегистрированным с помощью интерферометра белого света или полученным при подсветке поверхности лазерным излучением.

7. Способ сборки по п. 5, отличающийся тем, что кольцевой резонатор выполняют, по меньшей мере, трехзеркальным.

8. Способ сборки по п. 5, отличающийся тем, что все операции осуществляют для каждого зеркала.

9. Способ сборки кольцевого резонатора, включающий установку зеркал, сварку электродов, электровакуумную обработку и герметизацию, отличающийся тем, что перед установкой зеркал определяют рассеивающие свойства, по меньшей мере, одного зеркала на основе зарегистрированного трехмерного изображения его поверхности, выделяют анизотропную составляющую рассеяния, вызванную линейно структурированными дефектами в условиях лазерного излучения, падающего на зеркало под углом, характерным для данного типа резонатора, осуществляют выбор углового положения плоскости падения лазерного луча, соответствующего минимальной величине рассеяния, которая определяется как композиция полного интегрального и обратного рассеяния, затем

осуществляют установку, по меньшей мере, одного зеркала на кольцевой резонатор таким образом, что угловое положение, соответствующее минимальной величине рассеяния, совмещается с плоскостью кольцевого резонатора.

10. Способ сборки по п. 9, отличающийся тем, что выбор углового положения плоскости падения лазерного луча, соответствующего минимальной величине рассеяния, осуществляют по изображениям поверхности, зарегистрированным с помощью атомно-силового, зондового или модуляционного интерференционного микроскопа и интерферометра белого света или полученным при подсветке поверхности лазерным излучением.

11. Способ сборки по п. 9, отличающийся тем, что кольцевой резонатор выполняют, по меньшей мере, трехзеркальным.

12. Способ сборки по п. 9, отличающийся тем, что все операции осуществляют для каждого зеркала.

Документы, цитированные в отчете о поиске Патент 2017 года RU2626725C1

US 4884283 A, 28.11.1989
0
SU160760A1
СПОСОБ ОТБРАКОВКИ КОЛЬЦЕВЫХ РЕЗОНАТОРОВ ЛАЗЕРНЫХ ГИРОСКОПОВ 2014
  • Петрухин Евгений Александрович
RU2570096C1
US 5098188 A, 24.03.1992
СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА ИЗ ДРЕВЕСНЫХ ОТХОДОВ 2012
  • Тимербаев Наиль Фарилович
  • Сафин Рушан Гареевич
  • Зиатдинова Диляра Фариловна
  • Сафин Руслан Рушанович
  • Саттарова Зульфия Гаптелахатовна
  • Садртдинов Алмаз Ринатович
  • Шабаева Гузель Анасовна
  • Ахметова Дина Анасовна
  • Исмагилова Лилия Масгутовна
RU2507238C2

RU 2 626 725 C1

Авторы

Молчанов Алексей Владимирович

Чиркин Михаил Викторович

Серебряков Андрей Евгеньевич

Даты

2017-07-31Публикация

2016-04-08Подача