ПРОКЛАДКА, ДВИГАТЕЛЬ (ВАРИАНТЫ) И АВТОМОБИЛЬ Российский патент 2017 года по МПК F16H57/04 F16B43/00 F16N1/00 F02M63/00 

Описание патента на изобретение RU2627236C2

Область техники

Изобретение относится к области механики и автомобилестроения, в частности к прокладке, двигателю и автомобилю.

Уровень техники

Основная функция прокладки шестерни заключается в ограничении осевого перемещения шестерни для обеспечения устойчивой и надежной работы зубчатой передачи. В настоящее время прокладка промежуточной шестерни имеет круглую кольцеобразную конструкцию, в центре которой располагается отверстие для установки болта, а ее опорная сторона имеет плоскую поверхность.

Прокладка промежуточной шестерни плотно прижимается к валу промежуточной шестерни фиксирующим болтом. Между промежуточной шестерней и прокладкой промежуточной шестерни имеется определенный осевой зазор. В настоящее время осевой зазор составляет 0,1-0,2 мм. Осевой зазор обеспечивает нормальное вращение промежуточной шестерни. При вращении промежуточной шестерни, прокладка способна предотвращать осевое перемещение промежуточной шестерни, обеспечивая, таким образом, устойчивое и надежное ее вращение.

Во время вращения промежуточной шестерни между промежуточной шестерней и прокладкой промежуточной шестерни может возникать трение. Для предотвращения истирания промежуточной шестерни и прокладки промежуточной шестерни на поверхностях, которыми промежуточная шестерня и прокладка промежуточной шестерни контактируют друг с другом, для создания большего скольжения в целях уменьшения трения используется смазочное масло.

С одной стороны, поверхности, которыми прокладка промежуточной шестерни и промежуточная шестерня контактируют друг с другом, в уровне техники представляют собой плоскости. При такой плоской конструкции смазочному маслу сложно проникнуть в пространство между двумя поверхностями, что приводит к недостаточному смазывающему действию.

С другой стороны, так как вал представляет собой вращающуюся деталь, прокладка, установленная на валу, может испытывать трение с деталями при контакте и перемещении относительно последних во время работы. Поэтому прокладку необходимо смазывать. В нынешних условиях одним из способов для этого является создание сквозных отверстий в прокладке: чем больше таких отверстий, тем больше площадь смазывания и выше эффективность смазывания. Вместе с тем, чем больше отверстий, тем меньше жесткость и эффективность действия прокладки и соответственно ниже ее способность выдерживать осевое усилие. Известен способ, предусматривающий наличие на прокладке смазочных канавок, которые, как правило, расположены радиально и имеют выходы на внутренней или наружной окружностях, что обеспечивает эффективность действия прокладки и облегчает нанесение и добавление смазочного масла. Однако, когда смазочные канавки отстоят друг от друга по окружности на некотором расстоянии, то, во-первых, смазочное масло не лучшим образом распределяется по трущейся поверхности, а во-вторых, под воздействием сил трения о поверхности деталей, контактирующих с прокладкой и перемещающихся относительно нее, масло во время вращательного движения может выбрасываться наружу в радиальном направлении под действием центробежной силы, при этом расположенные радиально смазочные канавки становятся каналами для выброса масла, что приводит к его расходу. Очевидно, что это снижает эффективность смазывания прокладки маслом и сокращает срок ее службы. Кроме того, для обычных прокладок смазочное масло наносится лишь один раз (при монтаже) или периодически доливается. Возможность постоянного смазывания не рассматривается.

Обычные прокладки представляют собой недорогие детали, которые используются в больших количествах и которые трудно вынуть, так как они установлены в труднодоступных местах. Специалистам по техническому обслуживанию приходится периодически доливать смазочное масло или заменять прокладки, что сопряжено с трудовыми затратами, значительно превышающими стоимость прокладок. На практике специалисты по техническому обслуживанию обычно пассивно относятся к замене прокладок до возникновения таких проблем, как усиление шума двигателей или других неисправностей, вызываемых чрезмерным трением прокладки. Таким образом, направление более экономичного решения проблемы заключается в обеспечении максимально продолжительного действия смазочного масла на прокладку для уменьшения истирания и продления срока ее службы.

Краткое изложение сущности изобретения

Первой целью изобретения является устранение указанных выше недостатков для создания прокладки, обладающей лучшим смазывающим действием, и, как следствие, повышение ее эффективности и снижение стоимости обслуживания.

Указанная цель по одному из вариантов осуществления изобретения достигается за счет того, что прокладка, представляющая собой цельную деталь кольцеобразной формы, имеет по меньшей мере одну плоскую поверхность, снабженную смазочной канавкой, центральная ось которой имеет вид изогнутой или прямой линии, при этом, если центральная ось смазочной канавки имеет вид прямой линии, то внутренний угол между этой центральной осью и радиальной линией, исходящей из центра прокладки, больше нуля.

В предпочтительном случае смазочные канавки равномерно распределены по кольцевой поверхности прокладки.

В предпочтительном случае обе поверхности прокладки снабжены смазочными канавками, которые расположены в перемежающемся порядке на обеих поверхностях.

В предпочтительном случае обе поверхности прокладки снабжены смазочными канавками, формы которых на разных поверхностях могут быть одинаковыми или различными.

В предпочтительном случае смазочная канавка представляет собой сквозную смазочную канавку, два открытых конца которой выходят на наружную окружность прокладки.

В предпочтительном случае количество смазочных канавок составляет не менее двух.

В предпочтительном случае, количество смазочных канавок на разных поверхностях прокладки одинаково или различно.

В предпочтительном случае форма поперечного сечения смазочной канавки представляет собой равнобедренную трапецию с отсутствующим верхним основанием.

В предпочтительном случае внутренний угол между двумя линиями, продолжающими боковые стороны равнобедренной трапеции, составляет от 30° до 90°.

В предпочтительном случае в местах пересечения двух наклонных плоскостей боковых сторон смазочной канавки с плоскостью ее основания выполнено сопряжение по дуге окружности.

В предпочтительном случае смазочная канавка имеет форму плоской спирали, выходы на внутреннюю и наружную окружности, и делает по меньшей мере один оборот вокруг внутренней окружности.

В предпочтительном случае ширина смазочной канавки постепенно увеличивается в направлении от выхода на внутренней окружности.

В предпочтительном случае ширина смазочной канавки увеличивается постепенно и плавно.

В предпочтительном случае глубина смазочной канавки постепенно увеличивается в направлении от выхода на внутренней окружности.

В предпочтительном случае глубина увеличивается постепенно и плавно.

В предпочтительном случае обе поверхности прокладки снабжены смазочными канавками, в форме спиралей, имеющих одно и то же или противоположные направления.

В предпочтительном случае смазочная канавка имеет форму плоской спирали, один конец которой выходит на наружной или внутренней окружностях прокладки, а другой закрыт, причем смазочная канавка делает по меньшей мере один оборот вокруг внутренней окружности.

В предпочтительном случае ширина смазочной канавки уменьшается постепенно от открытого конца к закрытому.

В предпочтительном случае ширина уменьшается постепенно и плавно.

В предпочтительном случае глубина смазочной канавки уменьшается постепенно от открытого конца к закрытому.

В предпочтительном случае глубина уменьшается постепенно и плавно.

В предпочтительном случае обе поверхности прокладки снабжены смазочными канавками, каждая в форме спирали, имеющими одно и то же или противоположные направления.

В предпочтительном случае прокладка делается цельной и изготавливается штамповкой.

Второй целью изобретения является создание двигателя, требующего менее частого технического обслуживания.

Указанная цель по одному из вариантов осуществления изобретения достигается за счет того, что двигатель содержит шестерню распределения; цепь привода распределительного вала; топливную форсунку и прокладку заявленной конструкции.

Цепь привода распределительного вала приводит в движение шестерню распределения, которая контактирует с прокладкой и поворачивается относительно прокладки в направлении, обратном направлению спирали смазочной канавки прокладки, при этом топливная форсунка подает масло к цепи привода распределительного вала и прокладке одновременно.

Двигатель содержит вал, который имеет канал для подачи масла к расположенному у внутренней окружности прокладки выходу смазочной канавки, выполненной в форме спирали, при этом шестерня вращается в направлении, соответствующем направлению спирали прокладки.

В предпочтительном случае в качестве шестерни используется косозубая шестерня.

Двигатель, характеризующийся тем, что описываемая прокладка используется на его шпинделе.

Третьей целью изобретения является создание автомобиля, который требует менее частого технического обслуживания и допускает более продолжительные интервалы между работами по его техническому обслуживанию.

Указанная цель достигается за счет того, что в автомобиле используется вышеописанная прокладка.

При использовании прокладки в соответствии с вариантами осуществления изобретения смазочные канавки всегда имеют выход, расположенный под некоторым углом к направлению вращения промежуточной шестерни, чтобы закрытие выхода масляной пленкой вследствие вращения промежуточной шестерни не могло бы происходить у выхода смазочных канавок на поверхность прокладки и чтобы смазочное масло могло бы проникать к контактирующим поверхностям промежуточной шестерни и прокладки, что повышает эффективность смазывания. Если смазочной канавкой снабжена лишь одна поверхность прокладки, то это сокращает процесс ее изготовления и снижает производственные расходы.

Следует отметить, что наличие на прокладке смазочной канавки обеспечивает ее жесткость и эффективность действия прокладки. Когда смазочная канавка имеет форму плоской спирали, после того как смазочное масло проникает в смазочную канавку из ее выхода на внутренней окружности, трущаяся поверхность соседнего элемента (например, шестерни), действуя аналогично рабочему колесу водяного насоса, «откачивает» масло по смазочным канавкам таким образом, чтобы оно совершало по меньшей мере один оборот по спирали вокруг внутренней окружности и, таким образом, обеспечивалось бы смазывание всей поверхности прокладки по окружности без непосредственного выталкивания масла из смазочной канавки прокладки в радиальном направлении, что обеспечивает лучшее смазывающее действие и продлевает срок службы прокладки.

Смазывание окружающих деталей может быть также обеспечено и в том случае, когда выходы смазочной канавки имеются как на внутренней, так и на наружной окружностях.

Когда смазочная канавка имеет выходы на наружной и внутренней окружностях, ширина или глубина смазочной канавки увеличиваются постепенно в направлении от выхода на внутренней окружности в направлении течения масла, что аналогично постепенному увеличению диаметра трубы, образованной между смазочной канавкой и соседней деталью так, что соседняя деталь (например, шестерня) оказывается дальше от канала впуска масла после поворачивания относительно прокладки под действием трения о прокладку, а чем дальше от канала впуска масла, тем медленнее течет масло и тем выше статическое давление масла. Аналогично принципу действия спирального водяного насоса масло откачивается из смазочной канавки равномерно, после чего поступает в следующую ступень машины, циркулируя по смазываемой системе - например, поступает в масляный картер двигателя. Кроме того, постепенное увеличение ширины смазочной канавки также соответствует требованию, согласно которому, чем дальше от внутренней окружности, тем больше требуется смазочного масла.

Кроме того, постоянное и постепенное изменение ширины и глубины смазочной канавки, а также изготовление прокладки штамповкой в виде цельной детали облегчают процесс производства.

Кроме того, наличие смазочной канавки на обеих поверхностях прокладки предотвращает неправильную ее установку, если спирали имеют одинаковое направление, и допускает возможность вращения прокладки в различных направлениях, если спирали имеют противоположное направление.

При наличии канала для подачи масла на валу двигателя масло может поступать к выходу смазочной канавки, находящемуся на внутренней окружности прокладки. Направление вращения шестерни соответствует направлению спирали прокладки, т.е. шестерня и прокладка образуют спиральный масляный насос, который обеспечивает непрерывное смазывание прокладки.

В случае, когда смазочная канавка имеет выход на наружной окружности прокладки, в то время как другой конец [канавки] закрыт, масло поступает в смазочную канавку из этого выхода и движется самотеком по спирали смазочной канавки под действием силы тяжести. То, что другой конец смазочной канавки закрыт, предотвращает вытекание масла, продлевая тем самым время нахождения масла в смазочной канавке при сохранении неизменным количества доливаемого масла за единицу времени, что означает, что масло дольше удерживается в смазочной канавке, и смазывающее действие также оказывается более продолжительным; соответственно уменьшается периодичность добавления смазочной жидкости, что сокращает расходы, связанные с потерей масла и техническим обслуживанием. То, что спираль делает вокруг внутренней окружности один оборот, обеспечивает смазывание всей поверхности прокладки по окружности, обеспечивая тем самым лучшее смазывающее действие и продлевая срок службы прокладки. В случае, когда смазочная канавка имеет выход на внутренней окружности прокладки, в то время как другой конец [смазочной канавки] закрыт, большая часть центробежной силы, действующей на масло в смазочной канавке, компенсируется противодействующей силой, создаваемой стенкой смазочной канавки; масло может двигаться только в направлении спирали смазочной канавки, достигая закрытого конца спирали под действием детали, испытывающей трение о прокладку, что предотвращает выброс масла в радиальном направлении и ускоряет растекание масла. То, что спираль делает вокруг внутренней окружности по меньшей мере один оборот, обеспечивает смазывание всей поверхности прокладки по окружности, обеспечивая тем самым лучшее смазывающее действие и продлевая срок службы прокладки.

Постепенное уменьшение ширины или глубины смазочной канавки в направлении от открытого конца к закрытому концу уменьшает диаметр масляного канала, образованного между смазочной канавкой и соседней деталью. После добавления смазочное масло поступает в смазочную канавку через выход на наружной окружности, при запуске двигателя соседняя деталь вращается в направлении, противоположном направлению спирали смазочной канавки, и под действием этой детали, испытывающей трение о прокладку, по мере удаления от канала для впуска масла скорость течения масла повышается, а статическое давление масла снижается, что обеспечивает быстрое распределение масла по всей поверхности прокладки и способствует его удержанию.

Постоянное и постепенное изменение ширины и глубины смазывающей канавки, а также способ изготовления прокладки штамповкой в виде цельной детали облегчают процесс производства.

Кроме того, наличие смазочной канавки на обеих поверхностях прокладки предотвращает неправильную ее установку, если спирали имеют одинаковое направление, и допускает возможность вращения прокладки в различных направлениях, если спирали имеют противоположное направление.

Установка прокладки в соответствии с вариантами осуществления изобретения снижает уровень создаваемого шума и уменьшает частоту технического обслуживания.

Прокладка согласно заявленным вариантам осуществления изобретения снабжена смазочной канавкой для обеспечения жесткости и эффективности действия.

При этом, если ширина или глубина смазочной канавки постепенно уменьшаются в направлении течения масла, то после добавления смазочного масла, когда оборудование уже запущено и вал вращается, под действием детали, испытывающей трение о прокладку, скорость течения масла по мере удаления от канала для впуска масла повышается, а статическое давление масла снижается, что обеспечивает быстрое распределение масла по всей поверхности прокладки без его вытекания в направлении от закрытого конца.

Кроме того, постоянное и постепенное изменение ширины и глубины смазочной канавки, а также способ изготовления прокладки как цельной детали штамповкой облегчают процесс производства.

При этом наличие смазочной канавки на обеих поверхностях прокладки предотвращает неправильную ее установку, если спирали имеют одинаковое направление, и допускает возможность вращения в различных направлениях, если спирали имеют противоположное направление.

Установка прокладки в соответствии с заявленными вариантами осуществления изобретения в двигателе или на шпинделе автомобиля снижает уровень создаваемого шума и уменьшает частоту технического обслуживания.

Краткое описание чертежей

На чертежах, представленных ниже, дается дополнительное подробное объяснение вариантов осуществлении.

Фиг. 1 представляет собой конструкцию прокладки с размещением на ее поверхности смазочных канавок по схеме согласно первому варианту осуществления изобретения;

Фиг. 2 представляет собой конструкцию прокладки с размещением на ее поверхности смазочных канавок по схеме согласно второму варианту осуществления изобретения;

Фиг. 3 представляет собой поперечное сечение смазочной канавки прокладки по первому и второму вариантам осуществления изобретения;

Фиг. 4 представляет собой схематичное изображение прокладки по первому и второму вариантам осуществления изобретения;

Фиг. 5 представляет собой сечение приводного механизма топливного насоса двигателя согласно третьему варианту осуществления изобретения;

Фиг. 6 представляет собой вид прокладки со стороны, обозначенной направлением R на фиг. 5, по третьему варианту осуществления;

Фиг. 7 представляет собой сечение прокладки по линии В-В из фиг. 6;

Фиг. 8 представляет собой вид спереди на прокладку согласно четвертому варианту осуществления изобретения;

Фиг. 9 представляет собой сечение по линии С-С из фиг. 8;

Фиг. 10 представляет собой схему принципа действия двигателя, в котором используется прокладка по четвертому варианту осуществления изобретения;

Фиг. 11 представляет собой вид спереди на прокладку согласно пятому варианту осуществления изобретения; и

Фиг. 12 представляет собой схему принципа действия двигателя, в котором используется прокладка по пятому варианту осуществления изобретения.

Подробное описание вариантов осуществления

Ниже представлено подробное описание вариантов осуществления изобретения. Иллюстрации вариантов осуществления приведены на чертежах, на которых одни и те же или аналогичные позиции соответствуют одним и тем же или аналогичным элементам либо элементам, имеющим такие же или аналогичные функции. Варианты осуществления, описываемые ниже со ссылками на чертежи, являются примерными и имеют своей целью не ограничение изобретения, а его объяснение.

В настоящем описании необходимо понимать, что направления и указания положения, обозначенные понятиями центр, длина, ширина, толщина, вверх, вниз, передний, задний, левый, правый, вертикальный, горизонтальный, верх, низ, внутренний, наружный, по часовой стрелке, против часовой стрелки и т.п., основаны на направлениях и указаниях положения, показанных на чертежах, и приведены исключительно для облегчения понимания, а не для указания или подразумевания того, что соответствующее устройство или его элементы должны иметь определенное направление, а также быть размещены и эксплуатироваться в определенных направлениях. Таким образом, они не должны пониматься как ограничивающие изобретение.

Кроме того, понятия первый и второй приведены исключительно для понимания, а не для указания или подразумевания относительной важности либо косвенного указания на номера обозначенного технического признака. В настоящем описании понятие множество означает два или более двух, если явно не определено иное.

В вариантах осуществления изобретения, если явно не определено и не установлено иное, понятия установка, соединение, связь, крепление и т.п. следует понимать в широком смысле. Так, может идти речь о фиксированном соединении, разъемном соединении или неразъемном соединении; соединение может быть механическим или электрическим; соединение может быть прямым или косвенным - через промежуточную среду; может также иметь место соединение внутренних сторон двух элементов. Специалистам в соответствующей области понятны конкретные значения приведенных выше понятий, которые используются в примерах описания в зависимости от конкретных ситуаций.

Пример 1

Как показано на фиг. 2-4, прокладка плотно прижимается к валу 107 промежуточной шестерни 106 фиксирующим болтом. Между промежуточной шестерней 106 и прокладкой 105 предусмотрен некоторый осевой зазор для обеспечения нормального вращения промежуточной шестерни 106. Прокладка 105 представляет собой кольцеобразную цельную деталь 101 с диаметром наружной окружности 38,5 мм, диаметром внутренней окружности 12 мм и толщиной 2,5 мм. Характеристики прокладки промежуточной шестерни могут изменяться в соответствии с требованиями; при этом остаются неизменными конструктивные решения в вариантах осуществления изобретения. Поверхность прокладки, контактирующая с промежуточной шестерней, представляет собой плоскость с выполненной на ней смазочной канавкой 104, тогда как противоположная ей поверхность прокладки, удаленная от промежуточной шестерни, является плоской. Центральная ось смазочной канавки 104 представляет собой кривую линию 103. В рассматриваемом варианте осуществления выбранный материал прокладки известен из уровня техники, но выбор материала не оказывает влияния на техническое решение в предложенных вариантах осуществления изобретения. Центральная ось смазочной канавки может представлять собой кривую линию любого типа: криволинейная конструкция смазочной канавки положительно влияет на сохранение смазочного масла. Может быть по меньшей мере две смазочные канавки, в предпочтительном случае - три или четыре, и эти три или четыре смазочные канавки располагаются на плоскости прокладки равномерно. При криволинейной форме смазочной канавки смазочное масло в ней испытывает со стороны смазочной канавки сопротивление, которое находится в нелинейном отношении с радиально направленной центробежной силой, воздействующей на промежуточную шестерню. В этом случае сопротивление и центробежная сила образуют суммарную силу, направление которой составляет острый угол с направлением вращения промежуточной шестерни. Таким образом, исключается выброс смазочного масла наружу, что влияет на смазывающее действие. В предпочтительном случае обе поверхности прокладки снабжены смазочными канавками. Смазочная канавка на поверхности прокладки, удаленной от промежуточной шестерни, имеет такую же форму, что и смазочная канавка на поверхности, контактирующей с промежуточной шестерней, или форму, отличную от нее. Выражение «такую же» относится к случаю, когда смазочные канавки на двух поверхностях прокладки имеют идентичную форму; а выражение «отличную от…» подразумевает, что если форма смазочной канавки на какой-либо из двух поверхностей прокладки является криволинейной, то форма смазочной канавки на другой поверхности прокладки может быть прямолинейной. Очевидно, что смазочные канавки на разных поверхностях могут иметь отличные друг от друга формы.

Смазочные канавки на кольцевой поверхности прокладки расположены равномерно, при этом смазочные канавки на удаленной от промежуточной шестерни поверхности прокладки расположены в перемежающемся порядке относительно расположения смазочных канавок на поверхности, контактирующей с промежуточной шестерней. В предпочтительном случае каждая смазочная канавка представляет собой сквозную смазочную канавку, оба конца которой выходят на наружную окружность прокладки.

Форма поперечного сечения смазочной канавки представляет собой равнобедренную трапецию с отсутствующим верхним основанием, внутренний угол между двумя линиями, продолжающими боковые стороны равнобедренной трапеции, составляет от 30° до 90°, в предпочтительном случае от 30° до 60°, а в местах пересечения двух наклонных плоскостей боковых сторон смазочной канавки с плоскостью ее основания выполнено сопряжение по дуге окружности. Сопряжение по радиусу уменьшает трение между промежуточной шестерней и прокладкой, а также уменьшает выброс смазочного масла на контактирующие поверхности.

Пример 2

Как показано на фиг. 1, 3 и 4, прокладка плотно прижимается к валу 107 промежуточной шестерни 106 фиксирующим болтом. Между промежуточной шестерней 106 и прокладкой 105 предусмотрен некоторый осевой зазор для обеспечения нормального вращения промежуточной шестерни 106. Прокладка 105 представляет собой кольцеобразную цельную деталь 101, поверхность которой, удаленная от промежуточной шестерни, является плоской, а поверхность, контактирующая с промежуточной шестерней, представляет собой плоскость с выполненной на ней смазочной канавкой 104. В рассматриваемом варианте осуществления выбранный материал прокладки известен из уровня техники, но выбор материала не влияет на техническое решение в вариантах осуществления изобретения. Центральная ось смазочной канавки 104 представляет собой прямую линию 102. Острый угол между центральной осью смазочной канавки и радиусом кольцеобразной прокладки больше нуля, но не равен нулю. Имеется по меньшей мере две смазочные канавки, в предпочтительном случае - три или четыре, расположенные на плоскости прокладки равномерно. Смазочные канавки на кольцевой поверхности прокладки расположены равномерно, при этом смазочные канавки на удаленной от промежуточной шестерни поверхности прокладки расположены в перемежающемся порядке относительно расположения смазочных канавок на поверхности, контактирующей с промежуточной шестерней. В предпочтительном случае каждая смазочная канавка представляет собой сквозную смазочную канавку, оба конца которой выходят на наружную окружность прокладки. Форма поперечного сечения смазочной канавки представляет собой равнобедренную трапецию с отсутствующим верхним основанием, внутренний угол между двумя линиями, продолжающими боковые стороны равнобедренной трапеции, составляет от 30° до 90°, в предпочтительном случае от 30° до 60°, а в местах пересечения двух наклонных плоскостей боковых сторон смазочной канавки с плоскостью ее основания предусмотрено сопряжение по дуге окружности. Радиусное сопряжение уменьшает трение между промежуточной шестерней и прокладкой, а также уменьшает выброс смазочного масла на контактирующие поверхности.

Пример 3

На фиг. 5 в порядке иллюстрации показан приводной механизм топливного насоса в цепи привода распределительного вала двигателя. В механизме использована прокладка 2100. Разумеется, специалистам в соответствующей области понятно, что прокладка 2100 может также использоваться в других цепях распределения, таких как приводной механизм двигателя, или в месте, имеющем вал и шестерню в двигателе или в других местах в автомобиле. Через шестерню 2500 приводное усилие от коленчатого вала передается на ось 2200 привода, которая вращается в отверстии фланца 2400, неподвижно закрепленного на блоке цилиндров 2300. Прокладка 2100 надета на вал 2200 и располагается между шестерней 2500 и фланцем 2400. На фланце 2400 предусмотрен масляный канал 2410 для подачи масла к кольцеобразной смазочной канавке 2210 на валу 2200, которая выполняет функцию масляного канала, по которому масло подается к прокладке.

Как показано на фиг. 6, прокладка 2100 имеет кольцеобразную форму с внутренней окружностью 2110 и наружной окружностью 2120. Внутренняя окружность 2110 предназначена для надевания прокладки 2100 на вал. На поверхности, где прокладка 2100 и шестерня 2500 контактируют друг с другом и создается трение, предусмотрена смазочная канавка 2130 в форме спирали. Первый конец 2131 смазочной канавки 2130 выходит на внутреннюю окружность 2110, а второй конец 2132 выходит на наружную окружность 2120 прокладки. Смазочная канавка 2130 пересекает линию В-В или достигает этой линии, причем наружный диаметр прокладки 2100 по меньшей мере в два раза превышает расстояние от первого конца 2131 до второго конца 2132 смазочного канала, т.е. смазочная канавка 2130 делает вокруг внутренней окружности 2110 прокладки по меньшей мере один оборот.

Предположим, что шестерня 2500 поворачивается в это время по часовой стрелке в направлении, соответствующем направлению спирали смазочной канавки 2130 от первого ее конца 2131 к второму концу 2132. В это время масло в смазочной канавке 2130 стремится совершить круговое движение по направлению вращения соседней детали за счет трения соседней детали, инерции и вязкости масла. Таким образом, создаются действующие на масло центробежная и касательная силы. Так как смазочная канавка 2130 имеет форму плоской спирали, в любой точке стенки смазочной канавки 2130 центробежная сила, в основном, компенсируется противоположно направленной силой, создаваемой стенкой в соответствующей точке и действующей по касательной, т.е. в направлении, указанном пунктирной стрелкой на фиг. 6. В этом направлении ширина W смазочной канавки 2130 постепенно увеличивается, контактирующие поверхности смазочной канавки 2130 и шестерни 2500 вместе конструктивно образуют водяную камеру, действие которой аналогично спиральному водяному насосу, а трущаяся поверхность шестерни 2500 действует подобно рабочему колесу, «перекачивая» масло равномерно так, что прокладка 2100 находится в циркулирующей системе смазывания машины и смазывается непрерывно. Когда шестерня 2500 является промежуточной и используется в паре с роликовым подшипником, смазывать ролик неудобно, но перекачиваемое от прокладки 2100 масло обеспечивает его непрерывное смазывание, после чего поступает в масляный картер, чтобы участвовать в следующем цикле циркулирующего смазывания, что является преимуществом. Постепенное увеличение ширины смазочной канавки 2130 может быть ступенчатым или плавным. Прокладка 2100 может изготавливаться штамповкой, фрезерованием и т.п. С точки зрения эффективности производства выгодно, чтобы прокладка изготавливалась цельной методом штамповки с постепенно увеличивающейся шириной.

На фиг. 7 показано изменение глубины смазочной канавки 2130 в направлении течения масла. Глубина Н1 является наибольшей у второго конца - выхода 2132, а глубина Н3 является наименьшей у первого конца - выхода 2131, глубина Н2 между первым концом 2131 и вторым концом 2132 является промежуточной между Н1 и Н3; при этом изменение глубины происходит аналогично изменению ширины, то есть постепенно, и может быть ступенчатым или плавным, в предпочтительном случае изменение является постепенным и плавным. Изменения глубины и ширины производят одинаковый положительный эффект, поэтому повторно описывать его здесь нет необходимости.

Пример 4

Как показано на фиг. 8, прокладка 3100 имеет кольцеобразную форму с внутренней окружностью 3110 и наружной окружностью 3120. Между поверхностью прокладки и соседней деталью, плотно контактирующей с прокладкой 3100 и вращающейся относительно прокладки 3100, может возникать трение. На поверхности прокладки 3100, которая контактирует с такой деталью и которая подвергается трению, предусмотрена смазочная канавка 3130 в форме спирали. Первый конец 3131 смазочной канавки 3130 закрыт, а второй конец 3132 имеет выход на наружную окружность 3120. Смазочная канавка 3130 пересекает линию С-С или достигает этой линии (по линии С-С дается сечение на фиг. 9), при этом наружный диаметр прокладки 3100 по меньшей мере в два раза превышает расстояние от первого конца 3131 смазочной канавки до второго ее конца 3132, т.е. смазочная канавка 3130 делает вокруг внутренней окружности 3110 по меньшей мере один оборот. За счет того, что смазочная канавка 3130 делает вокруг внутренней окружности 3110 по меньшей мере один оборот, обеспечивается смазывание поверхности прокладки 3110 по всей окружности. Предположим, что соседняя деталь, испытывающая трение о прокладку, вращается по часовой стрелке, машинное масло поступает в смазочную канавку через выход на наружной окружности 3120 прокладки, после начала запуска оборудования соседняя деталь вращается все быстрее, при этом масло в смазочной канавке 3130 стремится совершать круговое движение по направлению вращения соседней детали в силу трения, инерции и вязкости самого масла. Таким образом, создаются действующие на масло от центра внутренней окружности 3110 в направлении наружу центробежная и касательная силы. Так как смазочная канавка 3130 имеет форму спирали, то в любой точке стенки смазочной канавки 3130 большая часть центробежной силы компенсируется создаваемой в соответствующей точке стенки противодействующей силой, действующей по касательной, т.е. по направлению пунктирной стрелки на фиг. 8, т.е. в направлении от второго конца 3132 к первому концу 3131. В этом направлении ширина W смазочной канавки 3130 уменьшается постепенно, после добавления смазочного масла и запуска оборудования при вращении вала с трущейся о прокладку деталью с увеличением расстояния от канала для впуска масла увеличивается скорость течения масла и снижается статическое давление масла, что обеспечивает быстрое растекание масла по всей поверхности прокладки и облегчает удержание масла на прокладке. Из приведенного выше описания понятно, что принцип действия смазочной канавки 3130 в форме спирали прокладки 3100 прямо противоположен принципу действия спирального водяного насоса. Принцип действия спирального водяного насоса заключается в том, чтобы откачивать воду из водяного насоса равномерно и с большим статическим давлением в то время, как принцип действия смазочной канавки 3130, имеющей форму спирали, заключается в том, чтобы заставлять масло продвигаться вперед равномерно по масляному каналу 3130, растекаясь и уменьшая статистическое давление, при этом соседняя деталь прокладки 3100 может рассматриваться в качестве рабочего колеса водяного насоса. Постепенное уменьшение ширины смазочной канавки 3130 может быть ступенчатым или плавным. Прокладка 3100 может изготавливаться штамповкой, фрезерованием и т.п. С точки зрения эффективности производства рекомендуется, чтобы прокладка изготавливалась цельной методом штамповки, с постепенным уменьшением ширины. Так как первый конец 3131 прокладки 3100 закрыт, достигнув первого конца 3131, масло не может двигаться дальше, чтобы вытечь из смазочной канавки 3130, что является преимуществом при добавлении масла извне.

На фиг. 9 показано изменение глубины смазочной канавки 3130 в направлении течения масла. Глубина Н1 - это наибольшая глубина, находящаяся у второго конца 3132 выхода, а глубина Н3 - наименьшая глубина у первого конца 3131 выхода, глубина Н2 между первым концом 3131 и вторым концом 3132 является промежуточной между Н1 и Н3; при этом изменение глубины аналогично изменению ширины, то есть изменение глубины происходит постепенно и может быть ступенчатым или плавным; предпочтительным является постепенное плавное изменение. Изменения глубины и ширины производят одинаковый положительный эффект, поэтому повторно описывать его здесь нет необходимости.

На фиг. 10 показан двигатель, в котором используется прокладка 3100, где в качестве примера показано ее взаимодействие с шестерней распределения. Шестерня 3500 представляет собой шестерню распределения, такую как шестерня топливного насоса, шестерня водяного насоса, шестерня генератора и т.п. в системе механизма распределения. Шестерня 3500 приводится в действие от коленчатого вала через цепь привода распределительного вала (не показана) и передает крутящий момент на вал 3200 для вращения в отверстии фланца 3400. Фланец 3400 неподвижно закреплен на блоке цилиндров 3300. Прокладка 3100 надета на вал 3200 и расположена между шестерней 3500 и фланцем 3400. Шестерня распределения 3500 вращается по часовой стрелке, если смотреть в направлении R, соответственно она является деталью, которая испытывает трение о прокладку 3100, а направление вращения шестерни распределения противоположно направлению спирали от первого конца 3131 ко второму концу 3132 смазочной канавки 3130 прокладки. При наличии цепи привода распределительного вала для подачи к ней машинного масла обычно используют топливную форсунку (не показана). Так как выход смазочной канавки прокладки 3100 расположен у наружной окружности 3120, машинное масло из топливной форсунки втекает в смазочную канавку 3130 со стороны второго конца 3132 выхода под действием силы тяжести или движется по каналу для смазочного масла.

Для специалистов в соответствующей области понятно, что прокладка 3100 согласно этому варианту осуществления изобретения может также использоваться в другом месте двигателя или в другом месте, таком как вал колеса или иного механического устройства. Если обе поверхности прокладки 3100 снабжены смазочными канавками 3130, то это позволяет исключить неправильную (обратную) установку прокладки 3100, если направления спиралей смазочных канавок на обеих поверхностях одинаковы (например, на обеих поверхностях предусмотрена левосторонняя или правосторонняя спираль); если же направления спиралей смазочных канавок на разных поверхностях противоположны, прокладка 3100 имеет большую универсальность, так как существует возможность выбора контактирующей трущейся поверхности прокладки 3100 об соседнюю деталь в соответствии с относительным направлением вращения соседней детали (например, по часовой стрелке или против часовой стрелки). Таким образом, предпочтительно иметь смазочные канавки на обеих поверхностях прокладки.

Пример 5

Как показано на фиг. 11, прокладка 4100 имеет кольцеобразную форму с внутренней окружностью 4110 и наружной окружностью 4120. Соседняя деталь, прилегающая к прокладке 4100, вращается относительно прокладки 4100, испытывая при этом трение о поверхность прокладки 4100. На поверхности прокладки 4100, которая контактирует с соседней деталью и которая испытывает трение, предусмотрена смазочная канавка 4130 в форме спирали. Первый конец 4131 смазочной канавки 4130 имеет выход у внутренней окружности 4110, а второй конец 4132 закрыт возле наружной окружности 4120. Смазочная канавка 4130 делает вокруг внутренней окружности 4110 по меньшей мере один оборот. Назначение выхода смазочной канавки 4130 заключается в подаче смазочного масла к прокладке 4100. То, что смазочная канавка 4130 делает вокруг внутренней окружности 4110 по меньшей мере один оборот, обеспечивает смазывание поверхности прокладки 4110 по всей окружности. Предположим, что соседняя деталь, испытывающая трение о прокладку 4100, вращается против часовой стрелки, и масло проходит от первого конца 4131 смазочной канавки, масло в смазочной канавке 4130 стремится совершать круговое движение по направлению вращения соседней детали в силу трения, инерции и вязкости самого масла. Таким образом, на масло действуют центробежная и касательная силы. Так как смазочная канавка 4130 имеет форму плоской спирали, то в любой точке стенки смазочной канавки 4130 центробежная сила в основном компенсируется противодействующей ей силой, создаваемой стенкой в соответствующей точке, и масло может двигаться только по касательной, т.е. в направлении, показанном пунктирной стрелкой на фиг. 11, т.е. в направлении от первого конца 4131 ко второму концу 4132. В предпочтительном случае ширина смазочной канавки 4130 постепенно уменьшается в указанном выше направлении, после добавления смазочного масла под действием детали, испытывающей трение о прокладку, когда оборудование запущено и вал вращается, по мере удаления от канала для впуска масла, скорость течения масла повышается, а статическое давление масла снижается. Из приведенного выше описания понятно, что принцип работы смазочной канавки 4130 прокладки 4100, которая имеет форму плоской спирали, прямо противоположен принципу работы спирального водяного насоса. Принцип действия спирального водяного насоса заключается в том, чтобы откачивать воду из водяного насоса равномерно и с большим статическим давлением, в то время как принцип действия смазочной канавки 4130, имеющей форму плоской спирали, заключается в том, чтобы заставлять масло продвигаться вперед равномерно по масляному каналу 4130, растекаясь и постепенно уменьшая статическое давление, где соседняя деталь прокладки 4100 может рассматриваться в качестве рабочего колеса водяного насоса. Постепенное уменьшение ширины смазочной канавки 4130 может быть ступенчатым или плавным. Прокладка 4100 может изготавливаться штамповкой, фрезерованием и т.п. С точки зрения эффективности производства рекомендуется, чтобы прокладка изготавливалась цельной методом штамповки с постепенным уменьшением ширины. Кроме того, специалисты в соответствующей области могут ожидать, что глубина смазочной канавки 4130 может уменьшаться постепенно в направлении от первого конца 4131 к второму концу 4132. Постепенное уменьшение может быть ступенчатым или плавным и в предпочтительном случае является постепенным и плавным. Изменения глубины и ширины производят одинаковый положительный эффект, поэтому повторно описывать его здесь нет необходимости.

На фиг. 12 показан двигатель, в котором используется прокладка 4100, где в качестве примера показана система, взаимодействующая с шестерней распределения. Шестерня 4500 представляет собой шестерню, которая приводится в движение от вала привода 4200, вращаясь в отверстии оси фланца 4400. Фланец 4400 неподвижно закреплен на блоке цилиндров 4300. Прокладка 4100 надета на вал 4200, расположена между шестерней 4500 и фланцем 4400 и обеспечивает подачу масла к первому концу 4132 из отверстия оси (не показано) вала 4200. Предположим, что приводная шестерня 4500 вращается против часовой стрелки, если смотреть в направлении R, и является деталью, испытывающей трение о прокладку 4100. Поверхность трения приводной шестерни 4500 и смазочная канавка 4130 образуют конструкцию, действие которой аналогично действию спирального водяного насоса. Однако принцип работы такой конструкции противоположен принципу работы спирального водяного насоса, так как изменения ширины и глубины смазочной канавки 4130 прямо противоположны соответствующим изменениям водяной камеры спирального водяного насоса. Прокладка 4100 обладает большей долговечностью по сравнению с формами других смазочных канавок прокладок, используемых в уровне техники.

Для специалистов в соответствующей области понятно, что прокладка 4100 согласно этому варианту осуществления изобретения может также использоваться в другом месте двигателя или в другом месте, таком как вал колеса или иного механического устройства. Кроме того, любое сочетание изменений ширины и глубины и направления спирали, например левосторонняя спираль и правосторонняя спираль, могут использоваться в соответствии с направлением вращения соседней детали прокладки 4100. Если обе поверхности прокладки 4100 снабжены смазочными канавками 4130, то это позволяет исключить неправильную (обратную) установку прокладки 4100, если направления спиралей смазочных канавок на обеих поверхностях одинаковы (например, на обеих поверхностях предусмотрена левосторонняя или правосторонняя спираль); если же направления спиралей смазочных канавок на разных поверхностях противоположны, прокладка 4100 обладает большей универсальностью, так как существует возможность выбора контактирующей трущейся поверхности прокладки 4100 о соседнюю деталь в соответствии с относительным направлением вращения соседней детали (например, по часовой стрелке или против часовой стрелки). Таким образом, предпочтительно иметь смазочные канавки на обеих поверхностях прокладки.

Специалистам в соответствующей области является очевидным, что все прокладки, показанные в примерах 1-5 настоящей заявки, могут использоваться в двигателе или автомобиле либо в другом механическом устройстве.

Выше были описаны некоторые показательные варианты осуществления изобретения, приведенные исключительно для пояснений. Разумеется, специалисты в соответствующей области могут вносить изменения в описываемые варианты осуществления разными способами без отступления от сущности и объема изобретения. Таким образом, рассматриваемые чертежи и описание носят, в основном, демонстрационный характер и не должны интерпретироваться как ограничивающие объем защиты настоящего изобретения.

Похожие патенты RU2627236C2

название год авторы номер документа
ГОЛОВКА БЛОКА ЦИЛИНДРОВ (ВАРИАНТЫ), СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ (ВАРИАНТЫ) И ДВИГАТЕЛЬ 2013
  • Лань Цзянь
  • Ху Чжишэн
  • Цянь Додэ
  • Сюй Тао
  • Тан Дэжунь
  • Люй Минь
  • Чжэн Цзюлинь
RU2629848C2
ПРИВОДНАЯ КОНСТРУКЦИЯ ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ 2013
  • Ху Чжишэн
  • Цзинь Сухуа
  • Цянь Додэ
  • Ху Бицянь
  • Мэн Сяншань
  • Цзу Бинфэн
  • Сюй Юйлян
  • Сюй Сюнь
  • Чжэн Цзюлинь
RU2618361C1
ПОРШНЕВОЕ КОЛЬЦО, СОДЕРЖАЩЕЕ КАНАВКУ ПО ОКРУЖНОСТИ КОЛЬЦА 2015
  • Маль Маркус
RU2676826C2
КАТЕТЕР ДЛЯ ДЕНЕРВАЦИИ 2014
  • Хванг Ин-Дже
  • Джанг Хае-Вон
  • Сонг Сеунг-Воо
  • Джанг Воо-Ик
RU2649527C2
Полуось автомобильного ведущего моста 2016
  • Чуньли Лю
  • Юнхуа Чэнь
  • Мин Цзян
  • Цзинь Лю
  • Кай Ху
  • Вэй Лю
  • Хунъянь Син
  • Хунсин Чжан
RU2647361C2
Клапанный механизм, двигатель и транспортное средство 2018
  • Лю Тао
  • Ян Фабао
  • Инь Цзи
  • Ху Цзяцзя
  • Сюй Лимин
  • Чжан Сун
  • Лю Лупин
  • Фан Яньлун
  • Ван Лей
RU2724807C1
ПОДШИПНИК СКОЛЬЖЕНИЯ 2017
  • Мендрух Николай Викторович
RU2645585C1
ТРУЩАЯСЯ ДЕТАЛЬ В СМАЗОЧНОЙ СРЕДЕ, РАБОТАЮЩАЯ ПРИ КОНТАКТНОМ ДАВЛЕНИИ, ПРЕВЫШАЮЩЕМ 200 МПа 2007
  • Морэн-Перрье Филипп
  • Ледраппье Флоран
  • Мурье Луи
  • Донне Кристоф
  • Одуар Эрик
  • Мазюйер Дени
RU2466307C2
ОПОРНЫЙ ПОДШИПНИК СКОЛЬЖЕНИЯ ТЯГОВОГО ДВИГАТЕЛЯ ЖЕЛЕЗНОДОРОЖНОГО ЛОКОМОТИВА (ВАРИАНТЫ), СПОСОБ УВЕЛИЧЕНИЯ ПЛОЩАДИ СМАЗЫВАЕМОЙ ПОВЕРХНОСТИ КОНТАКТА ТАКОГО ПОДШИПНИКА СКОЛЬЖЕНИЯ И СМАЗОЧНЫЙ ФИТИЛЬ ДЛЯ ИСПОЛЬЗОВАНИЯ В ТАКОМ ПОДШИПНИКЕ СКОЛЬЖЕНИЯ 2007
  • Фостер Роберт Б.
  • Бьен Поль
  • Маклин Джон Е.
RU2445520C2
ПОДШИПНИК СКОЛЬЖЕНИЯ 2007
  • Мацуяма Ютака
RU2398141C1

Иллюстрации к изобретению RU 2 627 236 C2

Реферат патента 2017 года ПРОКЛАДКА, ДВИГАТЕЛЬ (ВАРИАНТЫ) И АВТОМОБИЛЬ

Изобретение относится к прокладке, установленной на двигатель автомобиля. Прокладка (105, 2100, 3100, 4100) представляет собой цельную деталь круглой кольцеобразной формы (101). Одна поверхность прокладки снабжена смазочными канавками (104, 2130, 3130, 4130), а центральная ось смазочной канавки (104, 2130, 3130, 4130) представляет собой кривую (103) или прямую линию (102). Также заявлены двигатель и автомобиль, в которых используется прокладка (105, 2100, 3100, 4100). Достигается повышение надежности устройства. 5 н. и 21 з.п. ф-лы, 12 ил.

Формула изобретения RU 2 627 236 C2

1. Прокладка, характеризующаяся тем, что представляет собой цельную деталь круглой кольцеобразной формы, по меньшей мере одна поверхность которой снабжена смазочной канавкой в форме плоской спирали, которая делает по меньшей мере один оборот вокруг внутренней окружности прокладки.

2. Прокладка по п. 1, отличающаяся тем, что содержит не менее двух смазочных канавок.

3. Прокладка по п. 1, отличающаяся тем, что обе поверхности прокладки снабжены смазочными канавками, которые расположены на разных поверхностях прокладки.

4. Прокладка по п. 1, отличающаяся тем, что обе поверхности прокладки снабжены смазочными канавками, формы которых на разных поверхностях одинаковы или различны.

5. Прокладка по любому из пп. 3 или 4, отличающаяся тем, что количество смазочных канавок на разных поверхностях прокладки одинаково или различно.

6. Прокладка по п. 1, отличающаяся тем, что смазочная канавка представляет собой сквозную смазочную канавку с двумя открытыми концами, выходящими на наружную окружность прокладки.

7. Прокладка по любому из пп. 1-4, отличающаяся тем, что форма поперечного сечения смазочной канавки представляет собой равнобедренную трапецию с отсутствующим верхним основанием.

8. Прокладка по п. 7, отличающаяся тем, что внутренний угол между двумя линиями, продолжающими боковые стороны равнобедренной трапеции, составляет от 30° до 90°.

9. Прокладка по п. 7, отличающаяся тем, что в местах пересечения двух наклонных плоскостей боковых сторон смазочной канавки с плоскостью ее основания выполнено сопряжение по дуге окружности.

10. Прокладка по любому из пп. 1-4, отличающаяся тем, что смазочная канавка имеет выходы на внутреннюю и наружную окружности прокладки.

11. Прокладка по п. 10, отличающаяся тем, что ширина смазочной канавки увеличивается постепенно в направлении от выхода на внутренней окружности.

12. Прокладка по п. 11, отличающаяся тем, что ширина смазочной канавки увеличивается постепенно и плавно.

13. Прокладка по п. 10, отличающаяся тем, что глубина смазочной канавки увеличивается постепенно в направлении от выхода на внутренней окружности.

14. Прокладка по п. 13, отличающаяся тем, что глубина смазочной канавки увеличивается постепенно и плавно.

15. Прокладка по любому из пп. 1-4, отличающаяся тем, что один конец смазочной канавки выходит на наружную или внутреннюю окружности прокладки, а другой конец закрыт.

16. Прокладка по п. 15, отличающаяся тем, что ширина смазочной канавки уменьшается постепенно в направлении от выхода на внутренней окружности.

17. Прокладка по п. 16, отличающаяся тем, что ширина смазочной канавки уменьшается постепенно и плавно.

18. Прокладка по п. 15, отличающаяся тем, что глубина смазочной канавки уменьшается постепенно от открытого конца к закрытому.

19. Прокладка по п. 18, отличающаяся тем, что глубина смазочной канавки уменьшается постепенно и плавно.

20. Прокладка по п. 1, отличающаяся тем, что изготовлена цельной методом штамповки.

21. Двигатель, характеризующийся тем, что в его состав входят:

шестерня распределения;

цепь привода распределительного вала;

топливная форсунка;

прокладка по любому из пп. 1-20;

где цепь привода распределительного вала приводит в движение шестерню распределения, которая контактирует с прокладкой и вращается относительно прокладки в направлении, обратном направлению спирали смазочной канавки прокладки, а топливная форсунка обеспечивает подачу масла к цепи привода распределительного вала и прокладке одновременно.

22. Двигатель по п. 21, отличающийся тем, что в качестве шестерни используется косозубая шестерня.

23. Двигатель, характеризующийся тем, что в его состав входят:

шестерня;

прокладка согласно любому из пп. 1-20;

и вал с каналом для подачи масла к расположенному у внутренней окружности прокладки выходу смазочной канавки, выполненной в форме спирали, при этом шестерня вращается в направлении, соответствующем направлению спирали прокладки.

24. Двигатель по п. 23, отличающийся тем, что в качестве шестерни используется косозубая шестерня.

25. Двигатель, характеризующийся тем, что содержит прокладку по любому из пп. 1-20, установленную на его шпинделе.

26. Автомобиль, характеризующийся тем, что содержит прокладку по любому из пп. 1-20.

Документы, цитированные в отчете о поиске Патент 2017 года RU2627236C2

CN 201531585 U, 21.07.2010
CN 201531585 U, 21.07.2010
US 2004057813 A1, 25.03.2004
US 6264566 B1, 24.07.2001
CN 201368184 Y, 23.12.2009
Уплотнительное устройство 1988
  • Тривайло Михаил Семенович
SU1672054A1
ПРОКЛАДКА, СНИЖАЮЩАЯ ФРЕТТИНГ-ИЗНОС, И УЗЛЫ КРЕПЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЕТСЯ ПРОКЛАДКА 2008
  • Оотаке Наото
  • Мацуо Макото
RU2466304C2

RU 2 627 236 C2

Авторы

Ху Чжишэн

Цзинь Сухуа

Чжэн Цзюлинь

Лань Цзянь

Ма Юн

Цянь Додэ

Мэн Сяншань

Ху Бицянь

Даты

2017-08-04Публикация

2013-12-06Подача