Способ получения нанокапсул солей металлов в каррагинане Российский патент 2017 года по МПК A61K33/00 A61K47/36 A61K9/51 A61J3/07 B82B3/00 

Описание патента на изобретение RU2627578C1

Изобретение относится к области нанотехнологии, ветеринарной медицины и растениеводства.

Ранее были известны способы получения микрокапсул солей.

В пат. 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул солей металлов, отличающимся тем, что в качестве оболочки нанокапсул используется каррагинан при получении нанокапсул методом осаждения нерастворителем с применением метиленхлорида в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием метиленхлорида в качестве осадителя, а также использование каррагинана в качестве оболочки нанокапсул.

Результатом предлагаемого метода является получение нанокапсул солей в каррагинане.

ПРИМЕР 1. Получение нанокапсул сульфата марганца, соотношение ядро:оболочка 1:3

100 мг сульфата марганца медленно добавляют в суспензию 300 мг каррагинана в этаноле в присутствии 0,01 г Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1200 об/мин. Далее приливают 5 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул сульфата цинка, соотношение ядро:оболочка 1:3

100 мг сульфата цинка медленно добавляют в суспензию 300 мг каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 5 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул ванадата калия, соотношение ядро : оболочка 1:3

500 мг ванадата калия медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2,0 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4. Получение нанокапсул сульфата магния, соотношение ядро : оболочка 1:3

500 мг сульфата магния медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2,0 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 5. Получение нанокапсул хлорида стронция, соотношение ядро:оболочка 1:3

500 мг хлорида стронция медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2,0 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 6. Получение нанокапсул хлорида бария, соотношение ядро : оболочка 1:3

500 мг хлорида бария медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2,0 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 7. Получение нанокапсул нитрата церия, соотношение ядро:оболочка 1:3

500 мг нитрата церия медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2,0 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 8. Получение нанокапсул нитрата лантана, соотношение ядро:оболочка 1:3

500 мг нитрата лантана медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2,0 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 9. Получение нанокапсул сульфата никеля, соотношение ядро:оболочка 1:3

500 мг сульфата никеля медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2,0 г порошка нанокапсул светло-зеленого цвета. Выход составил 100%.

ПРИМЕР 10. Получение нанокапсул сульфата кобальта, соотношение ядро:оболочка 1:3

500 мг сульфата кобальта медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2,0 г порошка нанокапсул светло-розового цвета. Выход составил 100%.

ПРИМЕР 11. Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length : Auto, Min Expected Size : Auto, длительность единичного измерения 215s, использование шприцевого насоса.

Получены нанокапсулы солей металлов с достаточно высокими выходами. Предложенная методика вполне пригодна для применения в промышленных масштабах ввиду минимальных потерь и простоты исполнения.

Похожие патенты RU2627578C1

название год авторы номер документа
Способ получения нанокапсул солей металлов в альгинате натрия 2015
  • Кролевец Александр Александрович
RU2627577C1
Способ получения нанокапсул солей лантаноидов в каррагинане 2017
  • Кролевец Александр Александрович
RU2657755C1
Способ получения нанокапсул гидрокарбоната натрия в каррагинане 2015
  • Кролевец Александр Александрович
RU2625764C2
Способ получения нанокапсул нитроаммофоски 2017
  • Кролевец Александр Александрович
RU2671190C1
Способ получения нанокапсул оксидов металлов в каррагинане 2015
  • Кролевец Александр Александрович
RU2622982C1
Способ получения нанокапсул витаминов группы В 2016
  • Кролевец Александр Александрович
RU2646474C1
Способ получения нанокапсул витаминов группы В в каппа-каррагинане 2016
  • Кролевец Александр Александрович
RU2618449C1
Способ получения нанокапсул семян чиа (Salvia hispanica) в каррагинане 2016
  • Кролевец Александр Александрович
RU2624533C1
Способ получения нанокапсул 2,4-динитроанизола 2018
  • Кролевец Александр Александрович
RU2697842C1
Способ получения нанокапсул унаби в геллановой камеди 2016
  • Кролевец Александр Александрович
RU2624530C1

Реферат патента 2017 года Способ получения нанокапсул солей металлов в каррагинане

Изобретение относится к области нанотехнологии, ветеринарии и растениеводства и раскрывает способ получения нанокапсул солей металлов в каррагинане. Способ характеризуется тем, что в качестве оболочки нанокапсул используется каррагинан, а в качестве ядра - соль металла при массовом соотношении ядро:оболочка 1:3, при этом соль металла добавляют в суспензию каррагинана в этаноле, содержащую препарат Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин, далее приливают метиленхлорид, полученную суспензию отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул. 11 пр.

Формула изобретения RU 2 627 578 C1

Способ получения нанокапсул солей металлов в каррагинане, характеризующийся тем, что в качестве оболочки нанокапсул используется каррагинан, а в качестве ядра - соль металла при массовом соотношении ядро:оболочка 1:3, при этом соль металла добавляют в суспензию каррагинана в этаноле, содержащую препарат Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин, далее приливают метиленхлорид, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Документы, цитированные в отчете о поиске Патент 2017 года RU2627578C1

NAGAVARMA B
V
N
"Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23
СОЛОДОВНИК В
Д., "Микрокапсулирование", 1980, стр.136-137
WO 2012030134 A2, 08.03.2012
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АНТИБИОТИКОВ В КАРРАГИНАНЕ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2550919C1

RU 2 627 578 C1

Авторы

Кролевец Александр Александрович

Даты

2017-08-09Публикация

2016-01-20Подача