Изобретение относится к области нанотехнологии, ветеринарной медицины и растениеводства.
Ранее были известны способы получения микрокапсул солей.
В пат. 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул солей металлов, отличающимся тем, что в качестве оболочки нанокапсул используется каррагинан при получении нанокапсул методом осаждения нерастворителем с применением метиленхлорида в качестве осадителя.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием метиленхлорида в качестве осадителя, а также использование каррагинана в качестве оболочки нанокапсул.
Результатом предлагаемого метода является получение нанокапсул солей в каррагинане.
ПРИМЕР 1. Получение нанокапсул сульфата марганца, соотношение ядро:оболочка 1:3
100 мг сульфата марганца медленно добавляют в суспензию 300 мг каррагинана в этаноле в присутствии 0,01 г Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1200 об/мин. Далее приливают 5 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул сульфата цинка, соотношение ядро:оболочка 1:3
100 мг сульфата цинка медленно добавляют в суспензию 300 мг каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 5 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул ванадата калия, соотношение ядро : оболочка 1:3
500 мг ванадата калия медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2,0 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 4. Получение нанокапсул сульфата магния, соотношение ядро : оболочка 1:3
500 мг сульфата магния медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2,0 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 5. Получение нанокапсул хлорида стронция, соотношение ядро:оболочка 1:3
500 мг хлорида стронция медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2,0 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 6. Получение нанокапсул хлорида бария, соотношение ядро : оболочка 1:3
500 мг хлорида бария медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2,0 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 7. Получение нанокапсул нитрата церия, соотношение ядро:оболочка 1:3
500 мг нитрата церия медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2,0 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 8. Получение нанокапсул нитрата лантана, соотношение ядро:оболочка 1:3
500 мг нитрата лантана медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2,0 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 9. Получение нанокапсул сульфата никеля, соотношение ядро:оболочка 1:3
500 мг сульфата никеля медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2,0 г порошка нанокапсул светло-зеленого цвета. Выход составил 100%.
ПРИМЕР 10. Получение нанокапсул сульфата кобальта, соотношение ядро:оболочка 1:3
500 мг сульфата кобальта медленно добавляют в суспензию 1,5 г каррагинана в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин. Далее приливают 10 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2,0 г порошка нанокапсул светло-розового цвета. Выход составил 100%.
ПРИМЕР 11. Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length : Auto, Min Expected Size : Auto, длительность единичного измерения 215s, использование шприцевого насоса.
Получены нанокапсулы солей металлов с достаточно высокими выходами. Предложенная методика вполне пригодна для применения в промышленных масштабах ввиду минимальных потерь и простоты исполнения.
Изобретение относится к области нанотехнологии, ветеринарии и растениеводства и раскрывает способ получения нанокапсул солей металлов в каррагинане. Способ характеризуется тем, что в качестве оболочки нанокапсул используется каррагинан, а в качестве ядра - соль металла при массовом соотношении ядро:оболочка 1:3, при этом соль металла добавляют в суспензию каррагинана в этаноле, содержащую препарат Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин, далее приливают метиленхлорид, полученную суспензию отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул. 11 пр.
Способ получения нанокапсул солей металлов в каррагинане, характеризующийся тем, что в качестве оболочки нанокапсул используется каррагинан, а в качестве ядра - соль металла при массовом соотношении ядро:оболочка 1:3, при этом соль металла добавляют в суспензию каррагинана в этаноле, содержащую препарат Е472с в качестве поверхностно-активного вещества, при перемешивании 1200 об/мин, далее приливают метиленхлорид, полученную суспензию отфильтровывают и сушат при комнатной температуре.
NAGAVARMA B | |||
V | |||
N | |||
"Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23 | |||
СОЛОДОВНИК В | |||
Д., "Микрокапсулирование", 1980, стр.136-137 | |||
WO 2012030134 A2, 08.03.2012 | |||
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АНТИБИОТИКОВ В КАРРАГИНАНЕ | 2014 |
|
RU2550919C1 |
Авторы
Даты
2017-08-09—Публикация
2016-01-20—Подача