Ранее были известны способы получения микрокапсул солей.
В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4: 1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул оксидов металлов, отличающийся тем, что в качестве оболочки нанокапсул используется каррагинан при получении наночастиц методом осаждения нерастворителем с применением ацетона в качестве осадителя.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием ацетона в качестве осадителя, а также использование каррагинана в качестве оболочки частиц.
Результатом предлагаемого метода являются получение нанокапсул оксидов металла в оболочке из каррагинана.
ПРИМЕР 1
Получение нанокапсул оксида алюминия, соотношение ядро:оболочка 1:3
1 г оксида алюминия медленно прибавляют в суспензию 3 г каррагинана в петролейном эфире в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1200 об/мин. Далее приливают 5 мл ацетона. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка. Выход составил 100%.
ПРИМЕР 2
Получение нанокапсул оксида меди (I), соотношение ядро:оболочка 1:3
1 г оксида меди (I) медленно добавляют в суспензию 3 г каррагинана в петролейном эфире в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин. Далее приливают 5 мл ацетона. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка. Выход составил 100%.
ПРИМЕР 3
Получение нанокапсул оксида меди (II), соотношение ядро:оболочка 1:3
1 г оксида меди (II) медленно добавляют в суспензию 3 г каррагинана в петролейном эфире в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин. Далее приливают 5 мл ацетона. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка. Выход составил 100%.
ПРИМЕР 4
Получение нанокапсул оксида марганца (IV), соотношение ядро:оболочка 1:3
1 г оксида марганца (IV) медленно добавляют в суспензию 3 г каррагинана в петролейном эфире в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин. Далее приливают 5 мл ацетона. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка. Выход составил 100%.
ПРИМЕР 5
Получение нанокапсул оксида титана (IV), соотношение ядро:оболочка 1:3
1 г оксида титана (IV) медленно добавляют в суспензию 3 г каррагинана в петролейном эфире в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин. Далее приливают 5 мл ацетона. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка. Выход составил 100%.
ПРИМЕР 6
Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM Е2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length : Auto, Min Expected Size : Auto. длительность единичного измерения 215s, использование шприцевого насоса.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения нанокапсул оксидов металлов | 2015 |
|
RU2622011C2 |
Способ получения нанокапсул гидрокарбоната натрия в каррагинане | 2015 |
|
RU2625764C2 |
Способ получения нанокапсул солей металлов в каррагинане | 2016 |
|
RU2627578C1 |
Способ получения нанокапсул солей металлов в альгинате натрия | 2015 |
|
RU2627577C1 |
Способ получения нанокапсул витаминов группы В в каппа-каррагинане | 2016 |
|
RU2618449C1 |
Способ получения нанокапсул нитроаммофоски | 2017 |
|
RU2671190C1 |
Способ получения нанокапсул витамина В | 2019 |
|
RU2703269C1 |
Способ получения нанокапсул сухого экстракта шишек хмеля в каппа-каррагинане | 2019 |
|
RU2724578C1 |
Способ получения нанокапсул 2,4-динитроанизола | 2018 |
|
RU2697842C1 |
Способ получения нанокапсул 2,4-динитроанизола | 2020 |
|
RU2723716C1 |
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул оксидов металлов. Способ характеризуется тем, что оксиды металлов выбирают из оксида алюминия, оксида меди (I), оксида меди (II), оксида марганца (IV), оксида титана (IV), в качестве оболочки используется каррагинан. В процессе выполнения способа 1 г оксида металла медленно добавляют в суспензию 3 г каррагинана в петролейном эфире в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:3, далее приливают 5 мл ацетона, который используется в качестве осадителя, полученную суспензию отфильтровывают и сушат при комнатной температуре. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул. 3 ил., 6 пр.
Способ получения нанокапсул оксидов металлов, выбранных из оксида алюминия, оксида меди (I), оксида меди (II), оксида марганца (IV), оксида титана (IV), в каррагинане, характеризующийся тем, что 1 г оксида металла медленно добавляют в суспензию 3 г каррагинана в петролейном эфире в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:3, далее приливают 5 мл ацетона, полученную суспензию отфильтровывают и сушат при комнатной температуре.
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ | 1997 |
|
RU2134967C1 |
Счетный диск для определения заложения и превышения при тахеометрической и мензульной съемках | 1928 |
|
SU13588A1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОУЛЬТРАДИСПЕРСНОГО ПОРОШКА ОКСИДА МЕТАЛЛА | 2014 |
|
RU2579632C1 |
PARRIS N et.al | |||
Encapsulation of essential oils in zein nanospherical particles / J | |||
Agric | |||
Food Chem., 2005 | |||
Веникодробильный станок | 1921 |
|
SU53A1 |
Глушитель и маслоотделитель для автомобильных и т.п. двигателей | 1923 |
|
SU4788A1 |
ЧУЕШОВ В.И., "Промышленная технология лекарств в 2-х томах", том 2, 2002, стр | |||
Передвижная комнатная печь | 1922 |
|
SU383A1 |
NAGAVARMA B | |||
V | |||
N | |||
"Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23 | |||
WO 2004064544 A1, 05.08.2004. |
Авторы
Даты
2017-06-21—Публикация
2015-12-02—Подача