Область техники, к которой относится изобретение
[0001] Настоящее изобретение относится к устройству вычисления собственного местоположения и к способу вычисления собственного местоположения.
Уровень техники
[0002] Известна технология, в которой: камеры, установленные в транспортном средстве, захватывают и получают изображения окрестности транспортного средства; и величина перемещения транспортного средства получается на основе изменений изображений (см. патентный документ 1). Патентный документ 1 направлен на точное получение величины перемещения транспортного средства, даже если транспортное средство перемещается незначительно на низкой скорости. С этой целью, характерная точка обнаруживается из каждого изображения; позиция характерной точки получается; и в силу этого величина перемещения транспортного средства получается из направления и расстояния перемещения (величины перемещения) характерной точки.
Список библиографических ссылок
Патентные документы
[0003] Патентный документ 1. Публикация заявки на патент (Япония) номер 2008-175717.
Сущность изобретения
[0004] Тем не менее, вышеуказанная традиционная технология имеет такую проблему, что величина перемещения транспортного средства не может быть точно оценена, если начальные точки для получения величины перемещения транспортного средства сбрасываются в то время, когда поведение транспортного средства является неустойчивым.
[0005] Согласно этому уровню техники, предложено настоящее изобретение с учетом вышеприведенной ситуации. Цель настоящего изобретения заключается в том, чтобы предоставлять устройство вычисления собственного местоположения и способ вычисления собственного местоположения, которые допускают точное вычисление собственного местоположения транспортного средства посредством сброса начальных точек для вычисления собственного местоположения транспортного средства в то время, когда поведение транспортного средства является устойчивым.
[0006] В целях решения вышеприведенной проблемы, устройство вычисления собственного местоположения по одному аспекту настоящего изобретения захватывает и за счет этого получает изображение поверхности дороги вокруг транспортного средства, на которое проецируется свет, структурированный по шаблону,, и вычисляет угол ориентации транспортного средства относительно поверхности дороги из позиции света, структурированного по шаблону, в изображении. Затем устройство вычисления собственного местоположения вычисляет текущую позицию и текущий угол ориентации транспортного средства посредством: вычисления величины изменения ориентации транспортного средства на основе временных изменений нескольких характерных точек на поверхности дороги на полученном изображении; и суммирования величины изменения ориентации с начальной позицией и углом ориентации транспортного средства. После этого, когда определяется то, что транспортное средство находится в устойчивом состоянии движения, устройство вычисления собственного местоположения вычисляет текущую позицию и текущий угол ориентации транспортного средства посредством суммирования величины изменения ориентации с предварительно определенным начальным расстоянием и начальным углом ориентации транспортного средства.
Краткое описание чертежей
[0007] Фиг. 1 является блок-схемой, показывающей общую конфигурацию устройства вычисления собственного местоположения по первому варианту осуществления.
Фиг. 2 является внешним видом, показывающим пример того, как световой проектор и камера устанавливаются в транспортном средстве.
Фиг. 3(a) является схемой, показывающей то, как позиция областей световых пятен на поверхности дороги вычисляется посредством использования светового проектора и камеры. Фиг. 3(b) является схемой, показывающей то, как направление перемещения камеры получается из временных изменений характерной точки, которая обнаруживается за пределами области, на которую проецируется свет, структурированный по шаблону.
Фиг. 4 является схемой, показывающей изображение света, структурированного по шаблону, которое получается посредством применения процесса преобразования в двоичную форму к изображению, полученному с помощью камеры. Фиг. 4(a) является схемой, полностью показывающей свет, структурированный по шаблону. Фиг. 4(b) является увеличенной схемой, показывающей одно световое пятно. Фиг. 4(c) является схемой, показывающей позицию центра тяжести световых пятен.
Фиг. 5 является принципиальной схемой для описания способа вычисления величин изменений расстояния и угла ориентации.
Фиг. 6 является схемой, показывающей характерные точки, обнаруженные в изображении. Фиг. 6(a) является схемой, показывающей первый кадр (изображение), полученный во время t. Фиг. 6(b) является схемой, показывающей второй кадр, полученный во время t+Δt.
Фиг. 7 является временной диаграммой, показывающей процесс сброса расстояния и угла ориентации транспортного средства, который должен выполняться посредством устройства вычисления собственного местоположения по первому варианту осуществления в зависимости от того, находится или нет транспортное средство в устойчивом состоянии движения.
Фиг. 8 является блок-схемой последовательности операций способа, показывающей технологическую процедуру для процесса вычисления собственного местоположения, который должен выполняться посредством устройства вычисления собственного местоположения по первому варианту осуществления.
Фиг. 9 является блок-схемой последовательности операций способа, показывающей подробную технологическую процедуру для этапа S09 на фиг. 8, которая должна выполняться посредством устройства вычисления собственного местоположения по первому варианту осуществления.
Фиг. 10 является блок-схемой последовательности операций способа, показывающей подробную технологическую процедуру для этапа S09 на фиг. 8, которая должна выполняться посредством устройства вычисления собственного местоположения по второму варианту осуществления.
Подробное описание вариантов осуществления
[0008] Со ссылкой на чертежи, ниже предоставляется описание для первого и второго вариантов осуществления, к которым применяется настоящее изобретение.
[0009] Первый вариант осуществления
Аппаратная конфигурация
Для начала, со ссылкой на фиг. 1, ниже предоставляется описание аппаратной конфигурации устройства вычисления собственного местоположения по первому варианту осуществления. Устройство вычисления собственного местоположения включает в себя световой проектор 11, камеру 12 и модуль 13 управления двигателем (ECU). Световой проектор 11 устанавливается в транспортном средстве и проецирует свет, структурированный по шаблону, на поверхность дороги вокруг транспортного средства. Камера 12 устанавливается в транспортном средстве и является примером модуля захвата изображений, выполненного с возможностью захватывать и за счет этого получать изображения поверхности дороги вокруг транспортного средства, в том числе и области, на которую проецируется свет, структурированный по шаблону. ECU 13 является примером модуля управления, выполненного с возможностью управлять световым проектором 11 и выполнять последовательность циклов обработки информации для вычисления собственного местоположения транспортного средства из изображений, полученных посредством камеры 12.
[0010] Камера 12 представляет собой цифровую камеру с использованием полупроводникового датчика изображений, такого как CCD и CMOS, и получает цифровые изображения, которые допускают обработку изображений. То, что захватывает камера 12, представляет собой поверхность дороги вокруг транспортного средства. Поверхность дороги вокруг транспортного средства включает в себя поверхности дороги впереди, сзади, по бокам и под транспортным средством. Как показано на фиг. 2, камера 12 может устанавливаться в передней секции транспортного средства 10, более конкретно, например, над передним бампером. Высота и направление, в которых устанавливается камера 12, регулируются таким способом, который позволяет камере 12 захватывать изображения характерных точек (текстур) на поверхности 31 дороги перед транспортным средством 10 и света 32b, структурированного по шаблону, проецируемого из светового проектора 11. Фокус и диафрагма линзы камеры 12 также регулируются автоматически. Камера 12 многократно захватывает изображения с предварительно определенными временными интервалами и за счет этого получает последовательность групп изображений (кадров). Каждый раз, когда камера 12 захватывает изображение, данные изображений, полученные посредством камеры 12, передаются в ECU 13 и сохраняются в запоминающем устройстве, включенном в ECU 13.
[0011] Как показано на фиг. 2, световой проектор 11 проецирует свет 32b, структурированный по шаблону, имеющий предварительно определенную форму, в том числе квадратного или прямоугольного решетчатого изображения, на поверхность 31 дороги в диапазоне захвата изображений камеры 12. Камера 12 захватывает изображения света, структурированного по шаблону, проецируемого на поверхность 31 дороги. Световой проектор 11 включает в себя, например, лазерный указатель и дифракционную решетку. Дифракционная решетка дифрагирует лазерный луч, проецируемый из лазерного указателя. В силу этого, как показано на фиг. 2-4, световой проектор 11 формирует свет (32b, 32a), структурированный по шаблону, который включает в себя несколько световых пятен, размещаемых в решетчатом изображении или матричном шаблоне. В примерах, показанных на фиг. 3 и 4, световой проектор 11 формирует свет 32a, структурированный по шаблону, включающий в себя 5х7 световых пятен.
[0012] Возвращаясь к фиг. 1, ECU 13 включает в себя CPU, запоминающее устройство и микроконтроллер, включающий в себя секцию ввода-вывода. Посредством выполнения предварительно установленных компьютерных программ, ECU 13 формирует несколько информационных процессоров, которые выступают в качестве устройства вычисления собственного местоположения. Для каждого изображения (кадра), ECU 13 многократно выполняет последовательность циклов обработки информации для вычисления собственного местоположения транспортного средства из изображений, полученных посредством камеры 12. В этой связи, ECU 13 также может использоваться в качестве ECU для управления другими системами транспортного средства 10.
[0013] В этом отношении, несколько информационных процессоров включают в себя модуль 21 извлечения света, структурированного по шаблону, модуль 22 вычисления угла ориентации, модуль 23 обнаружения характерных точек, модуль 24 вычисления величины изменения ориентации, модуль 26 вычисления собственного местоположения, модуль 27 управления светом, структурированным по шаблону, и модуль 30 определения состояний движения. Модуль 24 вычисления величины изменения ориентации включает в себя модуль 23 обнаружения характерных точек.
[0014] Модуль 21 извлечения света, структурированного по шаблону, считывает изображение, полученное посредством камеры 12, из запоминающего устройства и извлекает позицию света, структурированного по шаблону, из этого изображения. Например, как показано на фиг. 3(a), световой проектор 11 проецирует свет 32a, структурированный по шаблону, который включает в себя несколько световых пятен, размещаемых в матричном шаблоне, на поверхность 31 дороги, в то время как камера 12 обнаруживает свет 32a, структурированный по шаблону, отражаемый от поверхности 31 дороги. Модуль 21 извлечения света, структурированного по шаблону, применяет процесс преобразования в двоичную форму к изображению, полученному посредством камеры 12, и за счет этого извлекает только изображение световых пятен Sp, как показано на фиг. 4(a) и 4(b). После этого, как показано на фиг. 4(c), модуль 21 извлечения света, структурированного по шаблону, извлекает позицию света 32a, структурированного по шаблону, посредством вычисления позиции He центра тяжести каждого светового пятна Sp, другими словами, координат (Uj, Vj) каждого светового пятна Sp в изображении. Координаты выражаются с использованием числа, назначаемого соответствующему пикселу в датчике изображений камеры 12. В случае если свет, структурированный по шаблону, включает в себя 5х7 световых пятен Sp, j является натуральным числом, не меньшим 1, но не большим 35. Запоминающее устройство сохраняет координаты (Uj, Vj) светового пятна Sp в изображении в качестве данных по позиции света 32a, структурированного по шаблону.
[0015] Модуль 22 вычисления угла ориентации считывает данные, которые указывают позицию света 32a, структурированного по шаблону, из запоминающего устройства и вычисляет расстояние и угол ориентации транспортного средства 10 относительно поверхности 31 дороги из позиции света 32a, структурированного по шаблону, в изображении, полученном посредством камеры 12. Например, как показано на фиг. 3(a), с использованием принципа тригонометрических измерений, модуль 22 вычисления угла ориентации вычисляет позицию каждой области световых пятен на поверхности 31 дороги, в качестве позиции области световых пятен относительно камеры 12, из базовой длины Lb между световым проектором 11 и камерой 12, а также координат (Uj, Vj) каждого светового пятна в изображении. После этого, модуль 22 вычисления угла ориентации вычисляет уравнение плоскости поверхности 31 дороги, на которую проецируется свет 32a, структурированный по шаблону, другими словами, расстояние и угол ориентации (вектор нормали) камеры 12 относительно поверхности 31 дороги, из относительной позиции каждого светового пятна относительно камеры 12.
[0016] Следует отметить, что в варианте осуществления расстояние и угол ориентации камеры 12 относительно поверхности 31 дороги вычисляются как пример расстояния и угла ориентации транспортного средства 10 относительно поверхности 31 дороги, поскольку позиция установки камеры 12 в транспортном средстве 10 и угол для захвата посредством камеры 12 изображений уже известны. Другими словами, расстояние между поверхностью 31 дороги и транспортным средством 10, а также угол ориентации транспортного средства 10 относительно поверхности 31 дороги могут получаться посредством вычисления расстояния и угла ориентации камеры 12 относительно поверхности 31 дороги.
[0017] Более конкретно, поскольку камера 12 и световой проектор 11 закрепляются на транспортном средстве 10, направление, в котором проецируется свет 32a, структурированный по шаблону, и расстояние (базовая длина Lb) между камерой 12 и световым проектором 11 уже известны. По этой причине, с использованием принципа тригонометрических измерений, модуль 22 вычисления угла ориентации допускает получение позиции каждой области световых пятен на поверхности 31 дороги, в качестве относительной позиции (Xj, Yj, Zj) каждого светового пятна относительно камеры 12, из координат (Uj, Vj) каждого светового пятна в изображении. В дальнейшем в этом документе, расстояние и угол ориентации камеры 12 относительно поверхности 31 дороги называются "расстоянием и углом ориентации". Расстояние и угол ориентации, вычисленные посредством модуля 22 вычисления угла ориентации, сохраняются в запоминающем устройстве.
[0018] Следует отметить, что во многих случаях, относительная позиция (Xj, Yj, Zj) каждого светового пятна относительно камеры 12 не присутствует на идентичной плоскости. Это обусловлено тем, что относительная позиция каждого светового пятна изменяется согласно неровности асфальта поверхности 31 дороги. По этой причине, метод наименьших квадратов может использоваться для того, чтобы получать уравнение плоскости, которое делает наименьшей сумму квадратов ошибки по расстоянию каждого светового пятна. Данные по такому вычисленному расстоянию и углу ориентации используются посредством модуля 26 вычисления собственного местоположения, показанного на фиг. 1.
[0019] Модуль 23 обнаружения характерных точек считывает изображение, полученное посредством камеры 12, из запоминающего устройства и обнаруживает характерные точки на поверхности 31 дороги из изображения, считываемого из запоминающего устройства. Чтобы обнаруживать характерные точки на поверхности 31 дороги, модуль 23 обнаружения характерных точек может использовать способ, описанный в работе D. G. Lowe "Distinctive Image Features from Scale-Invariant Keypoints", Int. J. Comput. Vis., издание 60, № 2, стр. 91-110, ноябрь 2000 года. В противном случае, модуль 23 обнаружения характерных точек может использовать способ, описанный в работе Kanazawa Yasushi, Kanatani Kenichi, "Detection of Feature Points for Computer Vision", IEICE Journal, издание 87, № 12, стр. 1043-1048, декабрь 2004 года.
[0020] Более конкретно, например, модуль 23 обнаружения характерных точек использует оператор Харриса или оператор SUSAN и обнаруживает такие точки, как вершины объекта, значения яркости которых существенно отличаются от окрестностей точек, в качестве характерных точек. Тем не менее, вместо этого, модуль 23 обнаружения характерных точек может использовать характерную величину по принципу SIFT (масштабно-инвариантного преобразования признаков), так что точки, вокруг которых значения яркости изменяются с определенной регулярностью, обнаруживаются в качестве характерных точек. Кроме того, модуль 23 обнаружения характерных точек подсчитывает общее число N характерных точек, обнаруженных из одного изображения, и назначает идентификационные номера (i (1≤i≤N)) соответствующим характерным точкам. Позиция (Ui, Vi) каждой характерной точки в изображении сохраняется в запоминающем устройстве в ECU 13. Фиг. 6(a) и 6(b) показывают примеры характерных точек Te, которые обнаруживаются из изображения, захваченного посредством камеры 12. Кроме того, направления изменений каждой характерной точки Te и величины изменений каждой характерной точки Te выражаются с помощью векторов Dte.
[0021] Следует отметить, что в варианте осуществления, смесь частиц асфальта с размером частиц не менее 1 см, но не более 2 см, предполагается в качестве характерных точек на поверхности 31 дороги. Камера 12 использует режим VGA-разрешения (приблизительно 300 тысяч пикселов) для того, чтобы обнаруживать характерные точки. Помимо этого, расстояние от камеры 12 относительно поверхности 31 дороги составляет приблизительно 70 см. Кроме того, направление, в котором камера 12 захватывает изображения, наклонено приблизительно под 45 градусами к поверхности 31 дороги от горизонтальной плоскости. Более того, значение яркости каждого изображения, захваченного посредством камеры 12 и после этого отправленного в ECU 13, находится в пределах диапазона от 0 до 255 (0: самое темное, 255: самое яркое).
[0022] Модуль 24 вычисления величины изменения ориентации считывает, из запоминающего устройства, позиционные координаты (Ui, Vi) нескольких характерных точек в изображении, включенном в предыдущий кадр с изображением (во время t), который находится в числе кадров с изображениями, захваченных в каждом определенном цикле обработки информации. Кроме того, модуль 24 вычисления величины изменения ориентации считывает, из запоминающего устройства, позиционные координаты (Ui, Vi) нескольких характерных точек в изображении, включенном в изображение текущего кадра (во время t+Δt). После этого, на основе временных изменений позиций нескольких характерных точек в изображении, модуль 24 вычисления величины изменения ориентации получает величину изменения ориентации транспортного средства. В этом отношении, "величина изменения ориентации транспортного средства" включает в себя как "величины изменений расстояния и угла ориентации" транспортного средства относительно поверхности дороги, так и "величину перемещения транспортного средства" на поверхности дороги. Ниже предоставляется описание того, как вычислять "величины изменений расстояния и угла ориентации" и "величину перемещения транспортного средства".
[0023] Величины изменений расстояния и угла ориентации могут получаться, например, следующим образом. Фиг. 6(a) показывает пример первого кадра 38 (изображения) (на фиг. 5), захваченного во время t. Допустим случай, в котором, как показано на фиг. 5 и 6(a), относительная позиция (Xi, Yi, Zi) каждой из трех характерных точек Te1, Te2, Te3 вычисляется, например, в первом кадре 38. В этом случае, плоскость G (см. фиг. 6(a)), идентифицированная посредством характерных точек Te1, Te2, Te3, может рассматриваться в качестве поверхности дороги. Соответственно, модуль 24 вычисления величины изменения ориентации допускает получение расстояния и угла ориентации (вектора нормали) камеры 12 относительно поверхности дороги (плоскости G) из относительной позиции (Xi, Yi, Zi) каждой из характерных точек. Кроме того, из уже известной модели камеры, модуль 24 вычисления величины изменения ориентации допускает получение расстояния l1, l2, l3 между каждой характерной точкой Te1, Te2, Te3, а также угла между прямыми линиями, соединяющими каждую характерную точку Te1, Te2, Te3. Камера 12 на фиг. 5 показывает позицию камеры, когда захватывается первый кадр.
[0024] Следует отметить, что на фиг. 5 трехмерные координаты (Xi, Yi, Zi), указывающие относительную позицию каждой характерной точки относительно камеры 12, задаются таким способом, что: ось Z совпадает с направлением, в котором камера 12 захватывает изображение; и оси X и Y, ортогональные друг к другу в плоскости, включающей в себя камеру 12, представляют собой линии, нормальные к направлению, в котором камера 12 захватывает изображение. Между тем, координаты в изображении 38 задаются таким образом, что: ось V совпадает с горизонтальным направлением; и ось U совпадает с вертикальным направлением.
[0025] Фиг. 6(b) показывает второй кадр 38', полученный во время (t+Δt), в которое продолжительность Δt истекла со времени t. Камера 12' на фиг. 5 показывает позицию камеры, когда камера захватывает второй кадр 38'. Как показано на фиг. 5 и 6(b), камера 12' захватывает изображение, включающее в себя характерные точки Te1, Te2, Te3, в качестве второго кадра 38', и модуль 23 обнаружения характерных точек обнаруживает характерные точки Te1, Te2, Te3 из изображения. В этом случае, модуль 24 вычисления величины изменения ориентации допускает вычисление величины ΔL перемещения камеры 12 в интервале Δt времени из: относительной позиции (Xi, Yi, Zi) каждой из характерных точек Te1, Te2, Te3 во время t; позиции P1(Ui, Vi) каждой характерной точки на втором кадре 38'; и модели камеры для камеры 12. Соответственно, модуль 24 вычисления величины изменения ориентации допускает вычисление величины перемещения транспортного средства. Кроме того, модуль 24 вычисления величины изменения ориентации также допускает вычисление величин изменений расстояния и угла ориентации. Например, модуль 24 вычисления величины изменения ориентации допускает вычисление величины (ΔL) перемещения камеры 12 (транспортного средства) и величин изменений расстояния и угла ориентации камеры 12 (транспортного средства) посредством решения следующей системы уравнений (1)-(4). В этой связи, уравнение (1), приведенное ниже, основано на идеальной камере с точечной диафрагмой без деформации и оптического осевого рассогласования, которая моделируется после камеры 12, где λi и f обозначают константу и фокусную длину. Параметры модели камеры могут калиброваться заранее.
[0026] уравнение 1
(1)
[0027] уравнение 2
(2)
[0028] уравнение 3
(3)
[0029] уравнение 4
(4)
[0030] Следует отметить, что вместо использования всех характерных точек, относительные позиции которых вычисляются в изображениях, обнаруженных во время t и во время t+Δt, модуль 24 вычисления величины изменения ориентации может выбирать оптимальные характерные точки на основе позиционных взаимосвязей между характерными точками. Пример способа выбора, применимого для этой цели, представляет собой эпиполярную геометрию (геометрию эпиполярных линий, описанную в работе R. I. Hartley "A linear method for reconstruction from lines and points", Proc. 5th International Conference on Computer Vision, Кембридж, штат Массачусетс, стр. 882-887 (1995)).
[0031] Если, как в этом случае, характерные точки Te1, Te2, Te3, относительные позиции которых в кадровом изображении 38 во время t вычисляются, также обнаруживаются посредством модуля 23 обнаружения характерных точек из кадрового изображения 38' во время t+Δt, модуль 24 вычисления величины изменения ориентации допускает вычисление "величины изменения угла ориентации транспортного средства" из временных изменений относительных позиций (Xi, Yi, Zi) нескольких характерных точек на поверхности дороги и временных изменений позиций (Ui, Vi) характерных точек в изображении. Кроме того, модуль 24 вычисления величины изменения ориентации допускает вычисление величины перемещения транспортного средства.
[0032] Более конкретно, если три или более характерных точек, имеющих отношение соответствия между предыдущим кадром и текущим кадром, могут обнаруживаться непрерывно, продолжение процесса (операции интегрирования) суммирования величин изменений расстояния и угла ориентации позволяет непрерывно обновлять расстояние и угол ориентации без использования света 32a, структурированного по шаблону. Тем не менее, расстояние и угол ориентации, вычисленные с использованием света 32a, структурированного по шаблону, либо предварительно определенного начального расстояния и начального угла ориентации, могут использоваться для первого цикла обработки информации. Другими словами, расстояние и угол ориентации, которые являются начальными точками операции интегрирования, могут вычисляться с использованием света 32a, структурированного по шаблону, или могут задаваться равными предварительно определенному начальному расстоянию и начальному углу ориентации. Желательно, если предварительно определенное начальное расстояние и начальный угол ориентации представляют собой расстояние и угол ориентации, определенные, по меньшей мере, с учетом пассажиров и рабочей нагрузки транспортного средства 10. Например, расстояние и угол ориентации, вычисленные с использованием света 32a, структурированного по шаблону, который проецируется в то время, когда переключатель зажигания транспортного средства 10 включен, и когда позиция переключения коробки передач перемещается из позиции для парковки в другую позицию, могут использоваться в качестве предварительно определенного начального расстояния и начального угла ориентации. В силу этого, можно получать расстояние и угол ориентации, которые не затрагиваются посредством перемещения по крену или перемещения с наклоном в продольном направлении транспортного средства 10 вследствие поворота, ускорения или замедления транспортного средства 10.
[0033] Следует отметить, что ассоциирование характерных точек в текущем кадре с характерными точками в предыдущем кадре может достигаться, например, посредством: сохранения изображения небольшой области вокруг каждой обнаруженной характерной точки в запоминающем устройстве; и для каждой характерной точки, выполнения определения из подобия в информации яркости и цветов. Более конкретно, ECU 13 сохраняет 5 (по горизонтали) х 5 (по вертикали) - пиксельное изображение вокруг каждой обнаруженной характерной точки в запоминающем устройстве. Если, например, ошибка в информации яркости, имеющей 20 или более пикселов, равна или меньше 1%, модуль 24 вычисления величины изменения ориентации определяет то, что рассматриваемая характерная точка соответствует промежутку между текущим и предыдущим кадрами. После этого, величина изменения ориентации, полученная посредством вышеприведенного процесса, используется посредством модуля 26 вычисления собственного местоположения на следующем этапе процесса для того, чтобы вычислять собственное местоположение транспортного средства.
[0034] Модуль 26 вычисления собственного местоположения вычисляет текущее расстояние и текущий угол ориентации транспортного средства 10 из "величин изменений расстояния и угла ориентации", вычисленных посредством модуля 24 вычисления величины изменения ориентации. Помимо этого, модуль 26 вычисления собственного местоположения вычисляет собственное местоположение транспортного средства из "величины перемещения транспортного средства", вычисленной посредством модуля 24 вычисления величины изменения ориентации.
[0035] Ниже предоставляется описание того, как выполнять вышеприведенные вычисления в конкретном случае, в котором расстояние и угол ориентации, вычисленные посредством модуля 22 вычисления угла ориентации (другими словами, расстояние и угол ориентации, вычисленные с использованием света, структурированного по шаблону), задаются в качестве начальных точек вычислений. В этом случае, модуль 26 вычисления собственного местоположения обновляет расстояние и угол ориентации с последними числовыми значениями посредством последовательного суммирования (выполнения операции интегрирования) величин изменений расстояния и угла ориентации, вычисленных для каждого кадра посредством модуля 24 вычисления величины изменения ориентации. Помимо этого, модуль 26 вычисления собственного местоположения вычисляет собственное местоположение транспортного средства посредством: задания позиции транспортного средства, которая получается, когда модуль 22 вычисления угла ориентации вычисляет расстояние и угол ориентации, в качестве начальной точки (начальной позиции транспортного средства); и посредством последовательного суммирования (выполнения операции интегрирования) величины перемещения транспортного средства из начальной позиции. Например, посредством задания начальной точки (начальной позиции транспортного средства), которая совпадает с позицией транспортного средства на карте, модуль 26 вычисления собственного местоположения допускает последовательное вычисление текущего собственного местоположения транспортного средства на карте.
[0036] В силу этого, модуль 24 вычисления величины изменения ориентации допускает вычисление собственного местоположения транспортного средства посредством получения величины (ΔL) перемещения камеры 12 для продолжительности Δt. Помимо этого, модуль 24 вычисления величины изменения ориентации допускает одновременное вычисление величин изменений расстояния и угла ориентации. По этим причинам, с учетом величин изменений расстояния и угла ориентации транспортного средства, модуль 24 вычисления величины изменения ориентации допускает точное вычисление величины (ΔL) перемещения с шестью степенями свободы (перемещение вперед/назад, перемещение влево/вправо, перемещение вверх/вниз, перемещение относительно вертикальной оси, наклон в продольном направлении и крен). Другими словами, ошибка в оценке величины (ΔL) перемещения может быть минимизирована, даже если расстояние и угол ориентации изменяются посредством перемещения по крену или перемещения с наклоном в продольном направлении вследствие поворота, ускорения или замедления транспортного средства 10.
[0037] В варианте осуществления, величина (ΔL) перемещения камеры 12 вычисляется посредством: вычисления величин изменений расстояния и угла ориентации; и обновления расстояния и угла ориентации. Тем не менее, вместо этого, величина (ΔL) перемещения камеры 12 может вычисляться посредством: вычисления величины изменения только угла ориентации камеры 12 относительно поверхности 31 дороги; и обновления только угла ориентации камеры 12. В этом случае, можно предполагать, что расстояние между поверхностью 31 дороги и камерой 12 остается постоянным. Это позволяет уменьшать рабочую нагрузку на ECU 13 при минимизации ошибки в оценке величины (ΔL) перемещения с учетом величины изменения угла ориентации и повышать скорость работы ECU 13.
[0038] Модуль 27 управления светом, структурированным по шаблону, управляет проецированием света 32a, структурированного по шаблону, посредством светового проектора 11. Например, когда переключатель зажигания транспортного средства 10 включается, и устройство вычисления собственного местоположения становится активированным, модуль 27 управления светом, структурированным по шаблону, одновременно начинает проецировать свет 32a, структурированный по шаблону. После этого, до тех пор, пока устройство вычисления собственного местоположения не прекратит работу, модуль 27 управления светом, структурированным по шаблону, продолжает проецирование света 32a, структурированного по шаблону. В противном случае, модуль 27 управления светом, структурированным по шаблону, может попеременно включать и выключать проецирование света с предварительно определенными интервалами.
[0039] Модуль 30 определения состояний движения обнаруживает состояние движения транспортного средства 10 и определяет то, находится или нет транспортное средство 10 в устойчивом состоянии движения. Когда модуль 30 определения состояний движения определяет то, что транспортное средство 10 находится в устойчивом состоянии движения, модуль 26 вычисления собственного местоположения задает позицию, в которой транспортное средство 10 находится в устойчивом состоянии движения, а также предварительно определенное начальное расстояние и начальный угол ориентации, в качестве начальных точек для вычисления собственного местоположения. В силу этого, модуль 26 вычисления собственного местоположения вычисляет текущую позицию транспортного средства 10 в данный момент, а также текущее расстояние и угол ориентации транспортного средства 10 в данный момент относительно поверхности дороги, посредством суммирования величины изменения ориентации с позицией, в которой транспортное средство 10 находится в устойчивом состоянии движения, а также с предварительно определенным начальным расстоянием и начальным углом ориентации.
[0040] С другой стороны, при определении того, что транспортное средство 10 не находится в устойчивом состоянии движения, модуль 30 определения состояний движения определяет то, вычисляет или нет модуль 22 вычисления угла ориентации расстояние и угол ориентации транспортного средства 10 из света 32a, структурированного по шаблону, в текущем цикле обработки информации. Если модуль 22 вычисления угла ориентации вычисляет расстояние и угол ориентации транспортного средства 10, модуль 26 вычисления собственного местоположения задает текущую позицию транспортного средства 10, а также текущее расстояние и угол ориентации транспортного средства 10 относительно поверхности дороги, которые вычисляются в текущем цикле обработки информации, в качестве начальных точек для вычисления собственного местоположения.
[0041] Если модуль 22 вычисления угла ориентации не вычисляет расстояние и угол ориентации транспортного средства 10 в текущем цикле обработки информации, модуль 26 вычисления собственного местоположения задает текущую позицию транспортного средства 10, а также текущее расстояние и угол ориентации транспортного средства 10 относительно поверхности дороги, которые вычисляются в предыдущем цикле обработки информации, в качестве начальных точек для вычисления собственного местоположения.
[0042] Здесь, предоставляется описание способа определения того, находится или нет транспортное средство 10 в устойчивом состоянии движения. В варианте осуществления, модуль 30 определения состояний движения определяет то, что транспортное средство 10 находится в устойчивом состоянии движения, когда транспортное средство 10 находится в, по меньшей мере, одном из состояния, в котором транспортное средство 10 остановлено, состояния, в котором скорость транспортного средства 10 является постоянной, и состояния, в котором транспортное средство 10 движется по прямой линии.
[0043] Способ определения того, остановлено или нет транспортное средство 10, осуществляется таким образом, что, если значение скорости вращения колес, измеряемое посредством датчика скорости вращения колес, установленного в транспортном средстве 10, равно 0 (нулю), модуль 30 определения состояний движения определяет то, что транспортное средство 10 остановлено.
[0044] Способ определения того, является или нет скорость транспортного средства 10 постоянной, осуществляется таким образом, что если ускорение транспортного средства 10 в направлении спереди назад, обнаруженное посредством датчика ускорения, установленного в транспортном средстве 10, равно или меньше порогового значения, модуль 30 определения состояний движения определяет то, что скорость транспортного средства 10 является постоянной. Пороговое значение задается равным ускорению Xg в направлении спереди назад, которое приводит к тому, что угол наклона в продольном направлении транспортного средства 10 изменяется на 0,01 (рад)≒0,57 (градус) по сравнению с состоянием стояния на месте транспортного средства 10. Это позволяет ограничивать ошибку в вычислении величины перемещения транспортного средства 10 в пределах 1%. В этой связи, в случае если датчик ускорения не устанавливается в транспортном средстве 10, ускорение может получаться посредством дифференцирования значения, измеряемого посредством датчика скорости вращения колес, или посредством дифференцирования величины перемещения транспортного средства 10, которая вычисляется посредством модуля 24 вычисления величины изменения ориентации, относительно времени.
[0045] Помимо этого, способ определения того, движется или нет транспортное средство 10 по прямой линии, осуществляется таким образом, что если ускорение транспортного средства 10 в направлении ширины транспортного средства, обнаруженное посредством датчика ускорения, установленного в транспортном средстве 10, равно или меньше порогового значения, модуль 30 определения состояний движения определяет то, что транспортное средство 10 движется по прямой линии. Пороговое значение задается равным ускорению Yg в направлении ширины транспортного средства, которое приводит к тому, что угол крена транспортного средства 10 изменяется на 0,01 (рад)≒0,57 (градус) по сравнению с состоянием стояния на месте транспортного средства 10. Это позволяет ограничивать ошибку в вычислении величины перемещения транспортного средства 10 в пределах 1%.
[0046] Следует отметить, что скорость γ относительно вертикальной оси (рад/с) (Yg≒Vхγ) согласно скорости V транспортного средства, которая делает ускорение транспортного средства 10 в направлении ширины транспортного средства равным Yg, может использоваться в качестве порогового значения. В противном случае, угол поворота руля при рулении может использоваться в качестве порогового значения. Кроме того, в случае если датчик ускорения или датчик скорости относительно вертикальной оси не устанавливается в транспортном средстве 10, ускорение может получаться посредством дифференцирования величины перемещения, которая вычисляется посредством модуля 24 вычисления величины изменения ориентации, относительно времени.
[0047] Как только, как описано выше, модуль 30 определения состояний движения определяет то, что транспортное средство 10 находится в устойчивом состоянии движения, в качестве результата определения того, находится или нет транспортное средство 10 в устойчивом состоянии движения, модуль 26 вычисления собственного местоположения вычисляет текущую позицию транспортного средства 10 в данный момент, а также текущее расстояние и угол ориентации транспортного средства 10 в данный момент относительно поверхности дороги, посредством суммирования величины изменения ориентации с позицией, в которой транспортное средство 10 находится в устойчивом состоянии движения, а также с предварительно определенным начальным расстоянием и начальным углом ориентации. В этом отношении, расстояние и угол ориентации транспортного средства 10 относительно поверхности дороги в то время, когда переключатель зажигания транспортного средства 10 включается, используются в качестве предварительно определенного начального расстояния и начального угла ориентации.
[0048] Предоставляется описание случая, в котором, например, модуль 30 определения состояний движения отслеживает ускорение транспортного средства 10 в направлении спереди назад, как показано на фиг. 7. Пороговое значение задается равным ускорению Xg, которое приводит к тому, что угол наклона в продольном направлении изменяется на 0,01 (рад). В этом случае, как только переключатель зажигания транспортного средства 10 включается во время t1, флаг вычисления угла ориентации активируется. Таким образом, свет 32a, структурированный по шаблону, проецируется в это время. Кроме того, модуль 22 вычисления угла ориентации вычисляет расстояние и угол ориентации транспортного средства 10 из позиции света 32a, структурированного по шаблону, и сохраняет результат вычисления в запоминающем устройстве. После этого, во время t2, поскольку ускорение транспортного средства 10 в направлении спереди назад равно или меньше порогового значения Xg, модуль 30 определения состояний движения определяет то, что транспортное средство 10 находится в устойчивом состоянии движения, и активирует флаг сброса. Соответственно, модуль 26 вычисления собственного местоположения сбрасывает начальные точки для вычисления собственного местоположения таким образом, что предварительно определенное начальное расстояние и начальный угол ориентации, а именно, текущая позиция транспортного средства 10, а также текущее расстояние и текущий угол ориентации транспортного средства 10 относительно поверхности дороги в то время, когда переключатель зажигания включается, используются в качестве начальных точек.
[0049] Тем не менее, во время t3, ускорение транспортного средства 10 в направлении спереди назад превышает пороговое значение Xg. По этой причине, модуль 30 определения состояний движения определяет то, что транспортное средство 10 не находится в устойчивом состоянии движения, и деактивирует флаг сброса. В силу этого, модуль 26 вычисления собственного местоположения прекращает использование предварительно определенного начального расстояния и начального угла ориентации в качестве начальных точек для вычисления собственного местоположения. После этого, во время t4, ускорение транспортного средства 10 в направлении спереди назад становится равным или меньше порогового значения Xg снова. По этой причине, модуль 30 определения состояний движения определяет то, что транспортное средство 10 находится в устойчивом состоянии движения, и активирует флаг сброса. Таким образом, модуль 26 вычисления собственного местоположения начинает использование предварительно определенного начального расстояния и начального угла ориентации в качестве начальных точек.
[0050] В варианте осуществления, как описано выше, когда модуль 30 определения состояний движения определяет то, что транспортное средство 10 находится в устойчивом состоянии движения, начальные точки для вычисления собственного местоположения задаются равными предварительно определенному начальному расстоянию и начальному углу ориентации. Это позволяет сбрасывать начальные точки для вычисления собственного местоположения транспортного средства 10, когда поведение транспортного средства 10 является устойчивым, и, соответственно, точно вычислять собственное местоположение транспортного средства 10.
[0051] Цикл обработки информации
Далее, со ссылкой на фиг. 8 и 9, предоставляется описание цикла обработки информации, который должен многократно выполняться посредством ECU 13. Цикл обработки информации является примером способа вычисления собственного местоположения для вычисления собственного местоположения транспортного средства 10 из изображения, полученного посредством камеры 12.
[0052] Цикл обработки информации, показанный на фиг. 8, начинается одновременно с тем, как устройство вычисления собственного местоположения становится активированным после того, как переключатель зажигания транспортного средства 10 включается, и многократно выполняется до тех пор, пока устройство вычисления собственного местоположения не прекратит работу.
[0053] На этапе S01 на фиг. 8, модуль 27 управления светом, структурированным по шаблону, управляет световым проектором 11 таким образом, чтобы проецировать свет 32a, структурированный по шаблону, на поверхность 31 дороги вокруг транспортного средства.
[0054] Переходя к этапу S03, ECU 13 управляет камерой 12 таким образом, чтобы получать изображение 38, с инструктированием камере 12 выполнять съемку поверхности 31 дороги вокруг транспортного средства, в том числе и области, на которую проецируется свет 32a, структурированный по шаблону. ECU 13 сохраняет данные для изображения, полученного посредством камеры 12, в запоминающем устройстве.
[0055] Следует отметить, что ECU 13 допускает автоматическое управление диафрагмой камеры 12. ECU 13 может быть выполнен с возможностью осуществлять управление с обратной связью диафрагмой камеры 12 таким способом, который приводит к тому, что значение яркости изображения становится равным среднему значению между максимальным и минимальным значениями в соответствии со средним яркости изображения 38, полученного в предыдущем цикле обработки информации. В противном случае, поскольку значение яркости области, на которую проецируется свет 32a, структурированный по шаблону, является высоким, ECU 13 может получать среднее значение яркости из области за пределами части, из которой извлекается свет 32a, структурированный по шаблону.
[0056] Переходя к этапу S05, для начала, модуль 21 извлечения света, структурированного по шаблону, считывает изображение 38, полученное посредством камеры 12, из запоминающего устройства и извлекает позицию света 32a, структурированного по шаблону, из изображения 38, как показано на фиг. 4(c). Модуль 21 извлечения света, структурированного по шаблону, сохраняет координаты (Uj, Vj) каждого светового пятна Sp в изображении, которые вычисляются как данные по позиции света 32a, структурированного по шаблону, в запоминающем устройстве.
[0057] Кроме того, на этапе S05, модуль 22 вычисления угла ориентации считывает данные, указывающие позицию света 32a, структурированного по шаблону, из запоминающего устройства, вычисляет расстояние и угол ориентации транспортного средства 10 относительно поверхности 31 дороги из позиции света 32a, структурированного по шаблону, и сохраняет такое вычисленное расстояние и угол ориентации в запоминающем устройстве.
[0058] Переходя к этапу S07, ECU 13 обнаруживает характерные точки из изображения 38, извлекает характерные точки, которые имеют отношение соответствия между предыдущим и текущим циклами обработки информации, и вычисляет величины изменений расстояния и угла ориентации из позиций (Ui, Vi) соответствующих извлеченных характерных точек в изображении. Помимо этого, ECU 13 вычисляет величину перемещения транспортного средства.
[0059] Более конкретно, для начала, модуль 23 обнаружения характерных точек считывает изображение 38, полученное посредством камеры 12, из запоминающего устройства, обнаруживает характерные точки на поверхности 31 дороги из изображения 38 и сохраняет позиции (Ui, Vi) соответствующих характерных точек в изображении в запоминающем устройстве.
[0060] Модуль 24 вычисления величины изменения ориентации считывает позиции (Ui, Vi) соответствующих характерных точек в изображении из запоминающего устройства и вычисляет относительные позиции (Xi, Yi, Zi) характерных точек относительно камеры 12 из расстояния и угла ориентации, которые вычисляются посредством модуля 22 вычисления угла ориентации, а также позиций (Ui, Vi) характерных точек в изображении. В этой связи, модуль 24 вычисления величины изменения ориентации использует расстояние и угол ориентации, которые задаются на этапе S09 в предыдущем цикле обработки информации. После этого, модуль 24 вычисления величины изменения ориентации сохраняет относительные позиции (Xi, Yi, Zi) характерных точек относительно камеры 12 в запоминающем устройстве.
[0061] После этого, модуль 24 вычисления величины изменения ориентации считывает позиции (Ui, Vi) характерных точек в изображении и относительные позиции (Xi, Yi, Zi) характерных точек, вычисленных на этапе S07 в предыдущем цикле обработки информации, из запоминающего устройства. Модуль 24 вычисления величины изменения ориентации вычисляет величины изменений расстояния и угла ориентации с использованием: относительных позиций (Xi, Yi, Zi) характерных точек, которые имеют отношение соответствия между предыдущим и текущим циклами обработки информации; и позиций (Ui, Vi) таких соответствующих характерных точек в изображении. Кроме того, модуль 24 вычисления величины изменения ориентации вычисляет величину перемещения транспортного средства из предыдущих относительных позиций (Xi, Yi, Zi) характерных точек и текущих относительных позиций (Xi, Yi, Zi) характерных точек и сохраняет результирующую величину перемещения транспортного средства в запоминающем устройстве. "Величины изменений расстояния и угла ориентации" и "величина перемещения транспортного средства", которые вычисляются на этапе S07, используются для процесса на этапе S11.
[0062] Переходя к этапу S09, ECU 13 задает начальные точки операции интегрирования для вычисления собственного местоположения согласно состояниям движения транспортного средства. Ниже описываются подробности со ссылкой на фиг. 9.
[0063] Переходя к этапу S11, модуль 26 вычисления собственного местоположения вычисляет собственное местоположение транспортного средства 10 из: начальных точек операции интегрирования, заданных на этапе S09; и величин изменений расстояния и угла ориентации транспортного средства 10, вычисленных в процессе на этапе S07.
[0064] Таким образом, устройство вычисления собственного местоположения по варианту осуществления допускает вычисление собственного местоположения транспортного средства 10 посредством повторного выполнения вышеприведенной последовательности циклов обработки информации для того, чтобы интегрировать величину перемещения транспортного средства 10.
[0065] Процесс на этапе S09
Далее, со ссылкой на блок-схему последовательности операций способа на фиг. 9, предоставляется описание подробной процедуры на этапе S09 на фиг. 8. Как показано на фиг. 9, на этапе S101, модуль 30 определения состояний движения обнаруживает состояние движения транспортного средства 10. Более конкретно, модуль 30 определения состояний движения обнаруживает скорость транспортного средства 10 с использованием датчика скорости вращения колес или обнаруживает ускорение транспортного средства 10 в направлении спереди назад или в направлении ширины транспортного средства с использованием датчика ускорения. В противном случае, модуль 30 определения состояний движения может обнаруживать скорость относительно вертикальной оси транспортного средства 10 с использованием датчика скорости относительно вертикальной оси.
[0066] Затем, на этапе S103, модуль 30 определения состояний движения определяет то, находится или нет транспортное средство 10 в устойчивом состоянии движения. Более конкретно, когда транспортное средство 10 остановлено, модуль 30 определения состояний движения определяет то, что транспортное средство 10 находится в устойчивом состоянии движения. В том случае, если значение скорости вращения колес, измеряемой посредством датчика скорости вращения колес, установленного в транспортном средстве 10, становится равным 0 (нулю), модуль 30 определения состояний движения определяет то, что транспортное средство 10 находится в устойчивом состоянии движения, посредством определения того, что транспортное средство 10 полностью останавливается.
[0067] Альтернативно, когда скорость транспортного средства 10 является постоянной, модуль 30 определения состояний движения определяет то, что транспортное средство 10 находится в устойчивом состоянии движения. В том случае, если ускорение транспортного средства 10 в направлении спереди назад, обнаруженное посредством датчика ускорения, установленного в транспортном средстве 10, равно или меньше порогового значения, модуль 30 определения состояний движения определяет то, что транспортное средство 10 находится в устойчивом состоянии движения, посредством определения того, что скорость транспортного средства 10 является постоянной.
[0068] В противном случае, когда транспортное средство 10 движется по прямой линии, модуль 30 определения состояний движения определяет то, что транспортное средство 10 находится в устойчивом состоянии движения. В том случае, если ускорение транспортного средства 10 в направлении ширины транспортного средства, обнаруженное посредством датчика ускорения, установленного в транспортном средстве 10, равно или меньше порогового значения, модуль 30 определения состояний движения определяет то, что транспортное средство 10 находится в устойчивом состоянии движения, посредством определения того, что транспортное средство 10 движется по прямой линии.
[0069] Как описано выше, когда модуль 30 определения состояний движения определяет то, что транспортное средство 10 находится в устойчивом состоянии движения, в качестве результата определения того, находится или нет транспортное средство 10 в устойчивом состоянии движения (если "Да" на этапе S103), процедура переходит к этапу S105. С другой стороны, когда модуль 30 определения состояний движения определяет то, что транспортное средство 10 не находится в устойчивом состоянии движения (если "Нет" на этапе S103), процедура переходит к этапу S107.
[0070] На этапе S105, модуль 26 вычисления собственного местоположения задает предварительно определенное начальное расстояние и начальный угол ориентации в качестве начальных точек операции интегрирования. В варианте осуществления, например, расстояние и угол ориентации транспортного средства 10 относительно поверхности дороги в то время, когда переключатель зажигания транспортного средства 10 включается, задаются в качестве предварительно определенного начального расстояния и начального угла ориентации.
[0071] На этапе S107, модуль 30 определения состояний движения определяет то, вычисляет или нет модуль 22 вычисления угла ориентации расстояние и угол ориентации из света 32a, структурированного по шаблону. Если модуль 22 вычисления угла ориентации вычисляет расстояние и угол ориентации на этапе S05 в текущем цикле обработки информации (если "Да" на этапе S107), процедура переходит к этапу S109. С другой стороны, если модуль 22 вычисления угла ориентации не вычисляет расстояние и угол ориентации на этапе S05 в текущем цикле обработки информации (если "Нет" на этапе S107), процедура переходит к этапу S111.
[0072] На этапе S109, модуль 26 вычисления собственного местоположения задает расстояние и угол ориентации, которые вычисляются из света 32a, структурированного по шаблону, на этапе S05 в текущем цикле обработки информации, в качестве начальных точек операции интегрирования. Помимо этого, модуль 26 вычисления собственного местоположения задает позицию транспортного средства, которая вычисляется вместе с расстоянием и углом ориентации в текущем цикле обработки информации, в качестве начальной точки операции интегрирования (начальной позиции транспортного средства).
[0073] На этапе S111, модуль 26 вычисления собственного местоположения задает расстояние и угол ориентации, которые вычисляются из света 32a, структурированного по шаблону, на этапе S05 в предыдущем цикле обработки информации, в качестве начальных точек операции интегрирования. Помимо этого, модуль 26 вычисления собственного местоположения задает позицию транспортного средства, которая вычисляется вместе с расстоянием и углом ориентации в предыдущем цикле обработки информации, в качестве начальной точки операции интегрирования (начальной позиции транспортного средства).
[0074] После того, как начальные точки операции интегрирования задаются таким образом, процесс на этапе S09 завершается, и процедура переходит к этапу S11, показанному на фиг. 8.
[0075] Преимущество первого варианта осуществления
Как подробно описано выше, при определении того, что транспортное средство 10 находится в устойчивом состоянии движения, устройство вычисления собственного местоположения по варианту осуществления вычисляет текущую позицию транспортного средства 10 в данный момент, а также текущее расстояние и угол ориентации транспортного средства 10 в данный момент относительно поверхности дороги, посредством суммирования величины изменения ориентации с предварительно определенным начальным расстоянием и начальным углом ориентации. Это позволяет устройству вычисления собственного местоположения сбрасывать начальные точки для вычисления собственного местоположения транспортного средства 10 на начальное расстояние и начальный угол ориентации, когда поведение транспортного средства 10 является устойчивым. Соответственно, устройство вычисления собственного местоположения допускает точное вычисление собственного местоположения транспортного средства 10. Кроме того, поскольку устройство вычисления собственного местоположения допускает периодический сброс начальных точек для вычисления собственного местоположения транспортного средства 10 на начальное расстояние и начальный угол ориентации, устройство вычисления собственного местоположения допускает предотвращение усиления ошибок.
[0076] Помимо этого, поскольку устройство вычисления собственного местоположения по варианту осуществления определяет то, что транспортное средство 10 находится в устойчивом состоянии движения, когда транспортное средство 10 остановлено, устройство вычисления собственного местоположения допускает надежное обнаружение того, что поведение транспортного средства 10 находится в устойчивом состоянии, и за счет этого допускает точное вычисление собственного местоположения транспортного средства 10.
[0077] Кроме того, поскольку устройство вычисления собственного местоположения по варианту осуществления определяет то, что транспортное средство 10 находится в устойчивом состоянии движения, когда скорость транспортного средства 10 является постоянной, устройство вычисления собственного местоположения допускает надежное обнаружение того, что поведение транспортного средства 10 находится в устойчивом состоянии, и за счет этого допускает точное вычисление собственного местоположения транспортного средства 10.
[0078] Кроме того, поскольку устройство вычисления собственного местоположения по варианту осуществления определяет то, что транспортное средство 10 находится в устойчивом состоянии движения, когда транспортное средство 10 движется по прямой линии, устройство вычисления собственного местоположения допускает надежное обнаружение того, что поведение транспортного средства 10 находится в устойчивом состоянии, и за счет этого допускает точное вычисление собственного местоположения транспортного средства 10.
[0079] Кроме того, устройство вычисления собственного местоположения по варианту осуществления использует расстояние и угол ориентации транспортного средства 10 относительно поверхности дороги в то время, когда переключатель зажигания транспортного средства 10 включается, в качестве предварительно определенного начального расстояния и начального угла ориентации. В силу этого, устройство вычисления собственного местоположения допускает представление начального расстояния и начального угла ориентации со значениями, отражающими пассажиров и рабочую нагрузку транспортного средства 10, и за счет этого допускает более точное вычисление собственного местоположения транспортного средства 10.
[0080] Второй вариант осуществления
Далее, со ссылкой на чертежи, предоставляется описание устройства вычисления собственного местоположения по второму варианту осуществления настоящего изобретения. Следует отметить, что конфигурация устройства вычисления собственного местоположения по варианту осуществления является идентичной конфигурации первого варианта осуществления, показанного на фиг. 1. По этой причине, подробное описание опускается.
[0081] Цикл обработки информации
Цикл обработки информации, который должен выполняться посредством устройства вычисления собственного местоположения по варианту осуществления, является идентичным циклу обработки информации первого варианта осуществления, показанного на фиг. 8. По этой причине, подробное описание цикла обработки информации опускается. Этот вариант осуществления отличается от первого варианта осуществления вследствие процесса для задания начальных точек операции интегрирования на этапе S09, показанном на фиг. 8.
[0082] Процесс на этапе S09
Далее, со ссылкой на блок-схему последовательности операций способа, показанную на фиг. 10, предоставляется описание подробной процедуры на этапе S09, показанном на фиг. 8. В вышеприведенном первом варианте осуществления, на этапе S103 определяется то, находится или нет транспортное средство 10 в устойчивом состоянии движения, и после этого, на этапе S107 определяется то, вычисляются или нет расстояние и угол ориентации из света 32a, структурированного по шаблону. Напротив, в этом варианте осуществления, как показано на фиг. 10, на этапе S203 определяется то, вычисляются или нет расстояние и угол ориентации из света 32a, структурированного по шаблону, и после этого, на этапе S205 определяется то, находится или нет транспортное средство 10 в устойчивом состоянии движения.
[0083] Процессы на других этапах S201 и S207-S211 являются идентичными процессам на этапах S101, S105, S109 и S111 на фиг. 9, соответственно. По этой причине, подробное описание опускается.
[0084] Преимущество второго варианта осуществления
Как описано выше, устройство вычисления собственного местоположения по варианту осуществления определяет то, находится или нет транспортное средство 10 в устойчивом состоянии движения, только в случае, если расстояние и угол ориентации транспортного средства 10 не могут вычисляться из света 32a, структурированного по шаблону, в текущем цикле обработки информации. Это уменьшает частоту, с которой устройство вычисления собственного местоположения выполняет процесс определения того, находится или нет транспортное средство 10 в устойчивом состоянии движения. Соответственно, можно уменьшать рабочую нагрузку ECU 13 и повышать скорость работы ECU 13.
[0085] Следует отметить, что вышеприведенные варианты осуществления являются примерами настоящего изобретения. По этой причине, настоящее изобретение не ограничено вышеприведенными вариантами осуществления. Очевидно, что: настоящее изобретение может осуществляться в режимах, отличающихся из вышеприведенного варианта осуществления; и согласно проектным решениям, различные модификации могут вноситься в настоящее изобретение в пределах объема без отступления от технической идеи настоящего изобретения.
Список номеров ссылок
[0086] 10 - транспортное средство
11 - световой проектор
12 - камера (модуль захвата изображений)
13 - ECU
21 - модуль извлечения света, структурированного по шаблону
22 - модуль вычисления угла ориентации
23 - модуль обнаружения характерных точек
24 - модуль вычисления величины изменения ориентации
26 - модуль вычисления собственного местоположения
27 - модуль управления светом, структурированным по шаблону
30 - модуль определения состояний движения
31 - поверхность дороги
32a, 32b - свет, структурированный по шаблону
Te - характерная точка.
Изобретение относится к устройству вычисления собственного местоположения транспортного средства. Устройство вычисления собственного местоположения содержит световой проектор, модуль захвата изображений, модуль вычисления угла ориентации, модуль вычисления величины изменения ориентации, модуль определения состояний движения. Когда модуль определения состояний движения определяет то, что транспортное средство находится в устойчивом состоянии движения, модуль вычисления собственного местоположения вычисляет текущую позицию и текущий угол ориентации транспортного средства посредством суммирования величины изменения ориентации с позицией и предварительно определенным начальным углом ориентации. Достигается повышение точности определения собственного местоположения транспортного средства. 2 н. и 4 з.п. ф-лы, 14 ил.
1. Устройство вычисления собственного местоположения, содержащее:
- световой проектор (11), выполненный с возможностью проецировать свет, структурированный по шаблону, на поверхность дороги вокруг транспортного средства (10);
- модуль (12) захвата изображений, установленный в транспортном средстве (10) и выполненный с возможностью захватывать и получать изображение поверхности дороги вокруг транспортного средства (10), включающее в себя область, на которую проецируется свет, структурированный по шаблону;
- модуль (22) вычисления угла ориентации, выполненный с возможностью вычислять угол ориентации транспортного средства (10) относительно поверхности дороги из позиции света, структурированного по шаблону, в изображении, полученном посредством модуля (12) захвата изображений;
- модуль (24) вычисления величины изменения ориентации, выполненный с возможностью вычислять величину изменения ориентации транспортного средства (10) на основе временных изменений множества характерных точек на поверхности дороги в изображении, полученном посредством модуля (12) захвата изображений;
- модуль (26) вычисления собственного местоположения, выполненный с возможностью вычислять текущую позицию и текущий угол ориентации транспортного средства (10) посредством суммирования величины изменения ориентации с начальной позицией и углом ориентации транспортного средства (10); и
- модуль (30) определения состояний движения, выполненный с возможностью обнаруживать состояние движения транспортного средства (10) и определять то, находится или нет транспортное средство (10) в устойчивом состоянии движения, при этом:
- когда модуль (30) определения состояний движения определяет то, что транспортное средство (10) находится в устойчивом состоянии движения, модуль (26) вычисления собственного местоположения вычисляет текущую позицию и текущий угол ориентации транспортного средства (10) посредством суммирования величины изменения ориентации с позицией и предварительно определенным начальным углом ориентации транспортного средства (10), которое находится в устойчивом состоянии движения.
2. Устройство вычисления собственного местоположения по п. 1, в котором, когда транспортное средство (10) остановлено, модуль (30) определения состояний движения определяет то, что транспортное средство (10) находится в устойчивом состоянии движения.
3. Устройство вычисления собственного местоположения по п. 1 или 2, в котором, когда скорость транспортного средства (10) является постоянной, модуль (30) определения состояний движения определяет то, что транспортное средство (10) находится в устойчивом состоянии движения.
4. Устройство вычисления собственного местоположения по любому из пп. 1 и 2, в котором, когда транспортное средство (10) движется по прямой линии, модуль (30) определения состояний движения определяет то, что транспортное средство (10) находится в устойчивом состоянии движения.
5. Устройство вычисления собственного местоположения по любому из пп. 1 и 2, в котором модуль (26) вычисления собственного местоположения использует текущую позицию и текущий угол ориентации транспортного средства (10) в то время, когда переключатель зажигания транспортного средства (10) включается, в качестве предварительно определенного начального угла ориентации.
6. Способ вычисления собственного местоположения, содержащий:
- процедуру, на которой проецируют свет, структурированный по шаблону, на поверхность дороги вокруг транспортного средства (10) из светового проектора (11), установленного в транспортном средстве (10);
- процедуру, на которой захватывают и получают изображение поверхности дороги вокруг транспортного средства (10), включающее в себя область, на которую проецируется свет, структурированный по шаблону, посредством модуля (12) захвата изображений, установленного в транспортном средстве (10);
- процедуру, на которой вычисляют угол ориентации транспортного средства (10) относительно поверхности дороги из позиции света, структурированного по шаблону, в изображении в модуле (12) управления транспортного средства (10);
- процедуру, на которой вычисляют величину изменения ориентации транспортного средства (10) на основе временных изменений множества характерных точек на поверхности дороги в изображении в модуле (13) управления;
- процедуру вычисления собственного местоположения, на которой вычисляют текущую позицию и текущий угол ориентации транспортного средства (10) посредством суммирования величины изменения ориентации с начальной позицией и углом ориентации транспортного средства (10) в модуле (13) управления; и
- процедуру определения состояний движения, на которой обнаруживают состояние движения транспортного средства (10) и определяют то, находится или нет транспортное средство (10) в устойчивом состоянии движения, в модуле (13) управления, при этом:
- когда в процедуре определения состояний движения определяется то, что транспортное средство (10) находится в устойчивом состоянии движения, текущая позиция и текущий угол ориентации транспортного средства (10) вычисляются в процедуре вычисления собственного местоположения посредством суммирования величины изменения ориентации с позицией и предварительно определенным начальным углом ориентации транспортного средства(10), которое находится в устойчивом состоянии движения.
ШАБЛОН ПОЗИЦИОНИРОВАНИЯ | 2006 |
|
RU2431804C2 |
JP 2013147114 A, 01.08.2013 | |||
JP 2007256090 A, 04.10.2007. |
Авторы
Даты
2017-08-16—Публикация
2014-02-24—Подача