Изобретение относится к медицине, в частности к лабораторным методам исследования, который позволяет не только осуществлять эффективный скрининг антиоксидантов, но и одновременно выявлять антиоксиданты, которые могут быть потенциальными антиатерогенными препаратами.
Интенсификация свободнорадикального окисления сопутствует развитию атеросклероза и сахарного диабета, внося важный вклад в патогенез этих заболеваний. Исходя из этого, включение препаратов из класса ингибиторов свободнорадикальных процессов - антиоксидантов в комплексную терапию атеросклероза и диабета представляется вполне актуальным. К настоящему времени имеются примеры успешного применения антиоксидантов для подавления образования атерогенных липопротеидов низкой плотности (ЛНП) при холестерин-снижающей терапии и подавления рестенозирования коронарных сосудов после их стентирования (Меньщикова Е.Б., Ланкин В.З., Кандалинцева Н.В. «Фенольные антиоксиданты в биологии и медицине». LAP LAMBERT Academic Publishing, Saarbrucken, 2012). Антиоксидант пробукол в течение ряда лет использовался в качестве антиатерогенного препарата (Lankin V.Z., Tikhaze А.K. et al., Mol. Cell. Biochem. 2003, 249(1-2): 129-40).
Например, антиоксидант мексидол широко применяется при осложнениях атеросклероза, включая нарушения кровообращения и микроинсульты. Кроме того, что антиоксиданты могут также использоваться для предотвращения дисфункции эндотелия у больных с заболеваниями сердечно-сосудистой системы (Shen Х.С. et al., ВМС Complement. Altern. Med. 2012, doi:10.1186/1472-6882-12-174). Таким образом, существует большая потребность в создании новых антиоксидантных препаратов медицинского назначения.
В настоящее время для скрининга антиоксидантных препаратов широко используется способ - метилолеатная модель свободнорадикального окисления (Меньшов В.А., Шишкина Л.Н., Кишковский З.Н. Прикладная биохимия и микробиология, 1994, 30(4): 632-637; Зенков Н.К., Кандалинцева Н.В., Ланкин В.З. и др. Фенольные антиоксиданты, 2003, стр. 41-53). Для осуществления скрининга испытуемые вещества растворяют в метиловом эфире олеиновой кислоты и проводят окисление субстрата при термостатировании и насыщении кислородом. В отобранных через определенные промежутки времени аликвотах субстрата при помощи йодометрического титрования анализируют содержание гидропероксидов олеиновой кислоты. По результатам строят кинетические кривые, из которых определяют продолжительность периода индукции (лаг-фазы) окисления.
Данный способ имеет целый ряд недостатков, а именно:
- механизм свободнорадикального окисления олеиновой кислоты существенно отличается от механизма окисления природных полиеновых липидов - основного субстрата окисления в живом организме;
- при использовании метилолеатной модели окисление происходит в гомогенной системе, тогда как природные липидсодержащие структуры являются гетерогенными, причем кинетические константы, характеризующие эффективность антиоксидантов, значительно отличаются при проведении исследования в гомогенных или гетерогенных системах;
- метилолеатная модель позволяет исследовать антиоксидантную активность исключительно жирорастворимых (гидрофобных) веществ, но не водорастворимых ингибиторов свободнорадикальных процессов;
- при использовании метилолеатной модели исследование занимает продолжительное время (до нескольких недель) и достаточно трудоемко (кинетика снимается по точкам, непрерывная регистрация невозможна).
Задачей предлагаемого изобретения является создание способа экспресс-скрининга потенциальных антиоксидантов с использованием кинетической модели медь-инициированного свободнорадикального окисления липопротеидов низкой плотности плазмы крови человека, позволяющего проводить предварительный отбор препаратов с высокой антиоксидантной активностью среди вновь синтезированных веществ для последующих биологических испытаний.
Технический результат изобретения заключается в повышении эффективности, быстроты и простоты осуществления анализов, а также возможности автоматизации определений.
Это достигается тем, что в заявляемом способе экспресс-скрининга потенциальных антиоксидантов, при котором выделяют липопротеиды низкой плотности (ЛНП) из плазмы венозной крови здоровых доноров, окисление липопротеидов низкой плотности осуществляют при температуре 37°С внесением 30 мМ сульфата меди (CuSO4), после чего через фиксированные интервалы времени измеряют накопление липогидропероксидов (конъюгированных диенов) при 233 нм (ΔD233) и по результатам исследования строят кинетическую кривую окисления ЛНП, из которой определяют продолжительность периода индукции (τ), затем в опытные пробы вносят исследуемые антиоксиданты (конечная концентрация 1 мкМ), растворенные либо в 96% этаноле - для жирорастворимых веществ или в среде инкубации - для водорастворимых веществ, и если продолжительность периода индукции исследуемого вещества выше 0,4 - вещество может рассматриваться в качестве эффективного антиоксиданта; если продолжительность периода индукции исследуемого вещества в предлагаемой тест-системе ниже 0,1 - исследованное вещество эффективным антиоксидантом не является.
Для скрининга антиоксидантов более правильно использовать способ медь-инициированного свободнорадикального окисления ЛНП, в котором субстратом окисления служат полиеновые ацилы фосфолипидов природных липид-белковых нанодисперсий плазмы крови (ЛНП) доноров, а исследуемые вещества (водорастворимые и жирорастворимые) вносятся непосредственно в среду окисления. Продолжительность периода индукции окисления ЛНП определяется спектрофотометрически в кинетическом режиме по поглощению липогидропероксидов при 233 нм.
Следует отметить, что использование в качестве субстрата окисления природной липидной дисперсии - ЛНП плазмы крови человека позволяет не только осуществлять эффективный скрининг потенциальных антиоксидантов, но и одновременно выявлять антиоксиданты, которые могут быть потенциальными антиатерогенными препаратами, поскольку эффективное ингибирование свободнорадикального окисления ЛНП в организме рассматривается в качестве важного механизма подавления атерогенеза.
Осуществление способа
Для препаративного выделения липопротеидов низкой плотности (ЛНП) используют плазму венозной крови здоровых доноров, взятой натощак в присутствии 1 мг/мл ЭДТА в качестве антикоагулянта и антиоксиданта. Изолирование ЛНП осуществляют по стандарному методу Лингрена. Плазму подвергают двукратному ультрацентрифугированию в градиенте плотности NaBr в течение 2 час при 41000 об/мин в угловом роторе 50Тi при 4° в рефрижераторной ультрацентрифуге Beckman L-8 (США), а затем подвергают диализу при 4° в течение 16 час против 50 мМ фосфатного буфера рН 7,4. Содержание белка в ЛНП определяют по методу Лоури и ЛНП разбавляют до 50 мкг белка/мл раствором, содержащим 0,154М NaCl в 50 мМ фосфатном буфере рН 7,4.
Окисление ЛНП (контрольная проба) инициируют при 37° внесением 30 мМ сульфата меди (CuSO4), после чего через фиксированные интервалы времени измеряют накопление липогидропероксидов (конъюгированных диенов) при 233 нм (ΔD233) на спектрофотометре Hitachi 220А (Япония). По результатам исследования строят кинетическую кривую окисления ЛНП, из которой определяют продолжительность лаг-фазы окисления (период индукции, τ). В опытные пробы вносят исследуемые антиоксиданты (конечная концентрация 1 мкМ), растворенные либо в 96% этаноле (конечная концентрация этанола в пробе не должна быть выше 2%) - для жирорастворимых веществ или в среде инкубации - для водорастворимых веществ. Если продолжительность периода индукции исследуемого вещества в предлагаемой тест-системе выше 0,4 - вещество может рассматриваться в качестве эффективного антиоксиданта и использоваться для доклинических испытаний; если продолжительность периода индукции исследуемого вещества в предлагаемой тест-системе ниже 0,1 - исследованное вещество эффективным антиоксидантом не является (дальнейшие доклинические испытания в для антиоксидантной терапии малоперспективны).
В качестве реперного антиоксиданта используется широко распространенный пищевой антиоксидант ионол (2,6-ди-трет-бутил-4-метилфенол, бутилированный гидрокситолуол, ВНТ), период индукции которого принимается за единицу. Это позволяет учесть различия в окислении контрольных образцов ЛНП, полученных из разных источников, для объективизации определений.
В случае необходимости свежевыделенные ЛНП могут быть заморожены при -70° в 20% сахарозе; аликвоты замороженных ЛНП могут храниться в течение 6 месяцев и, после разморозки, использоваться для последующих анализов.
Примеры осуществления способа
Пример 1
На Фиг. 1 показаны кинетические кривые Cu2+-инициированного свободнорадикального окисления ЛНП плазмы крови человека в присутствии ряда синтетических антиоксидантов (1 мкМ в среде инкубации). Приведены характерные кинетические кривые в контрольном образце (кривая 1); пробукола (4,4'-[1-метилэтилиден-бис(тио)]бис[2,6-бис(1,1-диметилэтил)фенол], (кривая 2); тиофана (бис-[3-(3,5-ди-трет-бутил-4-гидроксифенил)пропил]сульфид, (кривая 3); и при добавлении реперного антиоксиданта - 1 мкМ ионола (кривая 4).
Пример 2
На Фиг. 2 показаны кинетические кривые Cu2+-инициированного свободнорадикального окисления ЛНП, изолированных из плазмы крови пациента с сахарным диабетом 2 типа, где кривая а - ЛНП из плазмы крови больного СД 2 типа, получавшего стандартную сахароснижающую терапию в течение 2 месяцев; кривая б - ЛНП из плазмы крови больного СД 2 типа, получавшего в течение 2 месяцев пробукол (1 г/сут) на фоне стандартной сахароснижающей терапии. Данные, приведенные на Фиг. 2, показывают, что пробукол (соединение №2), обладающий высокой антиокислительной активностью в исследованной системе, проявляет выраженные антиоксидантные свойства и in vivo, т.е. при исследовании ЛНП, изолированных из плазмы крови пациента с сахарным диабетом 2 типа после двух месяцев проведения терапии с включением этого антиоксидантного препарата.
Пример 3
В таблице указаны периоды индукции исследованных препаратов, определенные по кинетике Cu2+-инициированного свободнорадикального окисления ЛНП плазмы крови (концентрация веществ в среде инубации - 1 мкМ). Приведены структурные формулы 11 исследованных фенольных антиоксидантов, а также абсолютные и относительные (рассчитаны по отношению к периоду индукции ионола, принятому за единицу) значения периодов индукции свободнорадикального окисления ЛНП в их присутствии. Из приведенных данных видно, что антиоксидантные потенции соединения №5 и №7 сравнимы с таковыми реперного антиоксиданта ионола (соединение №1). Очевидно, что вышеперечисленные соединения являются весьма перспективными для дальнейшей разработки в качестве потенциальных антиоксидантных препаратов. В то же время в использованной модельной системе антиоксидантная активность соединений №10 и №11 (α-токоферол) не выявлена, тогда как соединения №3 и №8 не только не ингибировали свободнорадикальное окисление ЛНП, но обладали слабой прооксидантной активностью. Таким образом, приведенные в таблице данные позволяют убедиться в том, что предлагаемая модельная система дает возможность проводить быстрый скрининг большого количества соединений для оценки их антиоксидантной активности. Есть все основания полагать, что антиоксидантная активность веществ, охарактеризованная с использованием предлагаемой системы свободнорадикального окисления ЛНП, позволяет также предсказать антиоксидантные потенции этих соединений при их терапевтическом использовании.
Следует отметить, что α-токоферол (соединение №11), который не проявлял антиоксидантных свойств в предложенной системе тестирования антиоксидантов, не влиял и на окисляемость ЛНП in vivo в соответствии с полученными данными. Следовательно, предлагаемая система скрининга антиоксидантов позволяет не только отбирать соединения с высокой антиокислительной активностью, но и прогнозировать их антиатерогенную активность (т.е. способность подавлять in vivo образование окисленных ЛНП, обладающих про-атерогенными свойствами).
Таким образом, преимуществами предлагаемого способа экспресс-скрининга потенциальных антиоксидантов являются:
- использование окисления природных липидных дисперсий, свободнорадикальные реакции в которых развиваются в полиненасыщенных жирных кислотах, т.е. так же, как это происходит в биомембранах, ЛНП и других липид-белковых комплексах клетки при окислительном стрессе;
- инициация окисления осуществляется за счет образования супероксидного анион-радикала, т.е. таким же образом, как это происходит в организме в соответствии с реакцией:
O2+Cu+→O2•-+Cu2+;
- предлагаемая система окисления предполагает возможность скрининга как гидрофобных (жирорастворимых) антиоксидантов, так и водорастворимых антиоксидантов;
- природный субстрат окисления - ЛНП плазмы крови человека после их препаративного выделения длительное время могут храниться в замороженном виде, причем само определение занимает, как правило, не более двух часов;
возможна непрерывная запись кинетики окисления в автоматическом режиме.
название | год | авторы | номер документа |
---|---|---|---|
КОСМЕТИЧЕСКОЕ И/ИЛИ ДЕРМАТОЛОГИЧЕСКОЕ СРЕДСТВО И АНТИОКСИДАНТ | 2005 |
|
RU2290169C1 |
КИНЕТИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ АКТИВНОСТИ БИОМАТЕРИАЛА | 2013 |
|
RU2563177C2 |
СПОСОБ КОРМЛЕНИЯ СОБАК | 2007 |
|
RU2407401C2 |
ПРОТИВОИШЕМИЧЕСКОЕ И АНТИАТЕРОСКЛЕРОТИЧЕСКОЕ ЛЕКАРСТВЕННОЕ СРЕДСТВО | 1998 |
|
RU2144822C1 |
СПОСОБ КОРРЕКЦИИ НАРУШЕНИЯ ЛИПИДНОГО ОБМЕНА | 2007 |
|
RU2337696C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СУММАРНОЙ АНТИОКСИДАНТНОЙ АКТИВНОСТИ КРОВИ | 1999 |
|
RU2157531C1 |
КИНЕТИЧЕСКИЙ СПОСОБ ТЕСТИРОВАНИЯ АНТИОКСИДАНТОВ | 2005 |
|
RU2322658C2 |
СПОСОБ ОЦЕНКИ АНТИОКСИДАНТНОЙ ЗАЩИТЫ ОРГАНИЗМА ЧЕЛОВЕКА | 2013 |
|
RU2538081C1 |
СРЕДСТВО, ОБЛАДАЮЩЕЕ АНТИАГРЕГАНТНОЙ, УМЕНЬШАЮЩЕЙ ПОВЫШЕННУЮ ВЯЗКОСТЬ КРОВИ И АНТИТРОМБОГЕННОЙ АКТИВНОСТЬЮ | 2008 |
|
RU2368376C1 |
СПОСОБ ДИАГНОСТИКИ СЕНСОНЕВРАЛЬНОЙ ТУГОУХОСТИ | 2003 |
|
RU2229131C1 |
Изобретение относится к медицине, в частности к лабораторным методам исследования, позволяющим осуществлять эффективный скрининг антиоксидантов. Способ экспресс-скрининга потенциальных антиоксидантов заключается в том, что выделяют липопротеиды низкой плотности (ЛНП) из плазмы венозной крови здоровых доноров, осуществляют окисление липопротеидов низкой плотности при температуре 37°С внесением 30 мМ сульфата меди (CuSO4), после чего через фиксированные интервалы времени измеряют накопление липогидропероксидов (конъюгированных диенов) при 233 нм (ΔD233) и по результатам исследования строят кинетическую кривую окисления ЛНП, из которой определяют продолжительность периода индукции (τ), затем в опытные пробы вносят исследуемые антиоксиданты (конечная концентрация 1 мкМ), растворенные либо в 96% этаноле - для жирорастворимых веществ или в среде инкубации - для водорастворимых веществ, и если продолжительность периода индукции исследуемого вещества выше 0,4 - вещество может рассматриваться в качестве эффективного антиоксиданта; если ниже 0,1 - исследованное вещество эффективным антиоксидантом не является. 3 пр., 2 ил., 1 табл.
Способ экспресс-скрининга потенциальных антиоксидантов, при котором выделяют липопротеиды низкой плотности (ЛНП) из плазмы венозной крови здоровых доноров, окисление липопротеидов низкой плотности осуществляют при температуре 37°C внесением 30 мМ сульфата меди (CuSO4), после чего через фиксированные интервалы времени измеряют накопление липогидропероксидов (конъюгированных диенов) при 233 нм (ΔD233) и по результатам исследования строят кинетическую кривую окисления ЛНП, из которой определяют продолжительность периода индукции (τ), затем в опытные пробы вносят исследуемые антиоксиданты (конечная концентрация 1 мкМ), растворенные либо в 96% этаноле - для жирорастворимых веществ или в среде инкубации - для водорастворимых веществ, и если продолжительность периода индукции исследуемого вещества выше 0,4 - вещество может рассматриваться в качестве эффективного антиоксиданта; если продолжительность периода индукции исследуемого вещества в предлагаемой тест-системе ниже 0,1 - исследованное вещество эффективным антиоксидантом не является.
Ф.Н.Бидарова и др | |||
Экспресс-методы оценки антиокислительной и антирадикальной активности органических субстратов | |||
Методические рекомендации по фармацевтической химии для студентов, обучающихся по специальности "Фармация" / Владикавказ, 2014 | |||
С.М | |||
Николаев и др | |||
Свободнорадикальное окисление и скрининг антиоксидантов, адаптогенов с использованием биотест-систем / Бюллетень ВСНЦ СО РАМН, 2010, N2(72), стр | |||
Пылеочистительное устройство к трепальным машинам | 1923 |
|
SU196A1 |
В.Г.Зайцев | |||
Модельные системы перекисного окисления липидов и их применение для оценки антиоксидантного действия лекарственных препаратов / Автореферат, Волгоград, 2001. |
Авторы
Даты
2017-08-29—Публикация
2016-07-19—Подача