Предлагаемое изобретение относится к области машиностроения, а именно к конструкциям гибких трубопроводов горячего газа, работающих в условиях высоких температур и переменных давлений, и направлено на их совершенствование.
Известна конструкция гибкого соединения трубопроводов, в которой цилиндрические металлические оболочки, телескопически заходящие друг в друга, сопряжены между собой по цилиндрическим поверхностям с уплотнительными кольцами (Патент РФ №2460003, М.кл. F16L 59/00).
Недостатком данной конструкции является то, что поверхность, на которой установлены уплотнительные кольца, выполнена цилиндрической, что не позволяет металлическим оболочкам разворачиваться относительно друг друга, для компенсации технологических и рабочих перекосов.
Известна конструкция телескопического соединения газоводов горячего газа, в которой в осевой зазор установлен с натягом закладной элемент (Патент РФ №2460004, М.кл. F16L 59/00).
Недостаток этой конструкции состоит в том, что в данной конструкции использованы простейшие цилиндрические детали из ТЗП и ЭСМ, конструкция которых не достаточна для использования в телескопических соединениях трубопроводов, то есть не разработана конструкция деталей из теплозащитного покрытия (ТЗП) и эрозионностойкого материала (ЭСМ), оформляющих вынужденные зазоры и стыки телескопического соединения.
Задачей изобретения является увеличение надежности работы телескопического соединения трубопровода горячего газа, работающего в условиях высоких температур и повышенного давления газа.
Указанная задача решается тем, что в трубопроводе горячего газа, состоящем из цилиндрических металлических оболочек, телескопически заходящих друг в друга, соединенных между собой через уплотнительные кольца, и защищенных изнутри последовательно теплозащитным покрытием и деталями из эрозионностойкого материала, при этом в зоне телескопического соединения цилиндрические металлические оболочки соединены с возможностью углового перемещения, причем внешняя металлическая цилиндрическая оболочка выполнена с местным цилиндрическим расширением по наружному диаметру, заполненным теплозащитным покрытием, в которое заходит ответная часть соединения, выполненная также из теплозащитного покрытия, а детали из теплозащитного покрытия и эрозионностойкого материала образуют конический зазор, вершина которого направлена в сторону потока горячего газа, поверхность внутренней металлической оболочки, на которой установлены уплотнительные кольца, выполнена конической, с вершиной, направленной в сторону потока горячего, а поверхность конического зазора, которая находится напротив потока горячего газа, образована двумя соосными коническими поверхностями, одна коническая поверхность, расположенная дальше от центральной оси газохода, параллельна конической поверхности ответной части, а вторая коническая поверхность выполнена с углом конусности, меньшим как минимум в два раза, чем угол конусности первой конической поверхности, при этом диаметр окружности пересечения конических поверхностей больше суммы внутреннего диаметра проходного сечения и удвоенной величины максимального конического зазора между параллельными плоскостями в радиальном направлении.
Торцовые стыки цилиндрических деталей из ЭСМ выполнены в виде замка ступенчатой формы, причем торец замка, расположенного ближе к центральной оси трубопровода, находится дальше от входа горячего газа, чем торец замка, расположенного дальше от оси трубопровода, при этом в направлении оси трубопровода длина ступеней замка превышает величину конического зазора между параллельными плоскостями в том же направлении.
На приведенной фигуре изображен трубопровод горячего газа.
Трубопровод горячего газа состоит из металлических цилиндрических оболочек 1 и 2, соединенных между собой через уплотнительные кольца 3. Поверхность А металлической оболочки 1 выполнена конической с углом конусности α, вершина конической поверхности направлена в сторону потока горячего газа.
Металлическая оболочка 2 выполнена с местным цилиндрическим расширением 4 по наружному диаметру, заполненным ТЗП, с прикрепленными деталями 5 из ТЗП и 6, 7 из ЭСМ, в нее заходит металлическая оболочка 1, к которой изнутри прикреплены детали 8 из ТЗП и 9 из ЭСМ. Поверхность Б деталей 8, 9 и поверхность В детали 6 образуют конический зазор δ. Зазор δ1 - зазор δ в радиальном направлении, зазор δ2 - зазор δ в осевом направлении. Поверхности Б, В выполнены параллельными, с углом конусности β, а поверхность Г с углом конусности ϕ.
Р - направление потока горячего газа.
D - диаметр окружности пересечения конических поверхностей В и Г.
d - диаметр проходного сечения.
β1 - угол между коническими поверхностями В и Г.
ϕ1 - угол между конической поверхностью Г и цилиндрической поверхностью диаметра d.
Е, K - торцы ступенчатого замка цилиндрических деталей 6, 7 из ЭСМ.
h - длина ступени замка.
Данная конструкция телескопического трубопровода при минимальных габаритах и весе газохода, при вынужденном развороте оболочек 1, 2 обусловлена следующими соображениями: обеспечением нормальной (рабочей с точки зрения прочности) температуры на наружной поверхности металлических оболочек и нормальной (рабочей с точки зрения герметичности) температуры уплотнительных колец между оболочками, то есть отсутствием в вынужденных зазорах и стыках вихрей горячего газа и как следствие размыва деталей из ЭСМ и ТЗП.
Конической (с углом конусности α) поверхность А металлической оболочки 1 выполнена для возможности разворота оболочек 1 и 2 друг относительно друга при технологических и возникающих в работе от давления и температуры перекосах оболочек. Вершина конической поверхности А направлена в сторону потока горячего газа для исключения выдавливания уплотнительных колец и обеспечения герметичности между оболочками 1 и 2.
Оболочка 2 выполнена с расширением 4, по наружному диаметру, заполненным ТЗП, что обеспечивает отсутствие непосредственного подхода горячего газа к металлу по зазору δ.
Зазор δ между деталями 8, 9 и деталью 6 выполнен коническим, вершина которого направлена в сторону потока горячего газа, так как конический зазор δ по сравнению, например, с радиальным (перпендикулярным оси трубопровода) имеет большую длину и меньшую ширину при одинаковом осевом перемещении, необходимом для работы, а направление конуса обеспечивает разворот потока при затекании в зазор и как следствие отсутствие вихрей в зазоре.
Одна сторона конического зазора δ оформлена двумя конусными поверхностями В и Г с углами конусности β и ϕ, диаметр D окружности пересечения конических поверхностей В и Г больше суммы внутреннего диаметра проходного сечения d и удвоенной величины максимального конического зазора между параллельными плоскостями в радиальном направлении δ1, т.е. D>d+2δ1, таким образом, при вынужденном развороте оболочек 1 и 2 струя газового потока, идущая со стороны детали 9 по внутреннему диаметру проходного сечения d, будет гарантированно попадать в коническую поверхность Г (так как D>d+2δ1).
Для того чтобы поток, попадая на поверхность Г, не затекал с вихрями в конический зазор δ, а проходил далее по направлению потока газа Р, необходимо, чтобы угол ϕ1 был равен или больше β1, а это обеспечивается, если угол ϕ≤1/2 β.
Подобное оформление конического зазора 5 обеспечивает отсутствие размыва деталей из ТЗП и ЭСМ и как следствие отсутствие прогрева наружной поверхности газохода.
По результатам опытов, когда в трубопроводе была выполнена только одна коническая поверхность, в месте телескопического соединения был замечен сильный прогрев конструкции и даже прогар. В предложенной конструкции интенсивный прогрев отсутствовал.
Торцевой стык цилиндрических деталей из ЭСМ 6, 7 выполнен ступенчатым и таким образом, что торец замка Е, расположенного ближе к центральной оси трубопровода, находится дальше от входа горячего газа Р, чем торец замка K, расположенного дальше от центральной оси трубопровода, то есть «ступенька» как бы выполнена в обратном направлении от направления потока горячего газа Р, кроме того, в направлении оси трубопровода длина ступеней замка h превышает величину конического зазора между параллельными плоскостями в том же направлении δ2 (h>δ2), так как такая конструкция обеспечивает:
- более длинный путь газового потока к ТЗП,
- разворот потока при затекании в зазор,
- и в случае расхождения стыка ЭСМ («плавания» детали 6 во время работы) отсутствие выхода из зацепления ступени детали 6 со ступенью детали 7, то есть отсутствие «прямого» подхода горячего газа к ТЗП.
Трубопровод горячего газа устанавливается следующим образом: оболочка 1 жестко крепится с корпусом газогенератора, а оболочка 2 через шаровой шарнир крепится к корпусу регулятора расхода горячего газа.
В процессе сборки и работы трубопровода горячего газа возникают технологические и рабочие (от давления и температуры) перекосы оболочек 1 и 2 друг относительно друга, а также передвижения оболочки 2 параллельно оси.
Устройство работает следующим образом: при истечении горячего газа в результате того, что зазор выполнен в форме конуса и вершиной конуса направлен дальше от входа потока горячего газа, чем его основание, а поверхность В и Г детали 6 выполнена определенным образом, не происходит затекания в зазор δ вихревого потока горячего газа (образуется застойная зона), и, как следствие, телескопический стык трубопровода не прогорает. Кроме того, горячий газ не затекает в стыки между деталями из ЭСМ, так как замок выполнен в обратном направлении от потока горячего газа.
Таким образом, конструкция трубопровода горячего газа, описанного выше, работающего в условиях высоких температур и повышенного давления газа, при минимальных габаритах и весе, при вынужденном развороте и перемещении оболочек, обусловленных условиями установки газохода, обеспечивает нормальную температуру наружных металлических поверхностей и уплотнительных колец, отсутствие в зазорах и стыках вихрей горячего газа и размыва деталей из ЭСМ и ТЗП, и, как следствие, надежность работы трубопровода.
название | год | авторы | номер документа |
---|---|---|---|
ТЕЛЕСКОПИЧЕСКОЕ СОЕДИНЕНИЕ ГАЗОВОДОВ | 2011 |
|
RU2460004C1 |
Корпус ракетного двигателя на твёрдом топливе | 2019 |
|
RU2727216C1 |
Клапан для регулирования расхода горячего газа | 2018 |
|
RU2684696C1 |
Способ экспериментального определения неравномерности полей температур газового потока теплоизолированного трубопровода высокого давления и датчик температуры | 2016 |
|
RU2657319C1 |
ГИБКОЕ СОЕДИНЕНИЕ ГАЗОВОДА | 2011 |
|
RU2460003C1 |
УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ И РЕСУРСНЫХ ХАРАКТЕРИСТИК ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ | 2015 |
|
RU2587524C1 |
Регулятор расхода горячего газа | 2019 |
|
RU2746682C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ АДГЕЗИОННОЙ ПРОЧНОСТИ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ НА СДВИГ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2013 |
|
RU2548378C1 |
Способ нанесения теплозащитного покрытия на наружную поверхность корпусных изделий | 2015 |
|
RU2639417C1 |
ТЕПЛОЗАЩИТНОЕ ПОКРЫТИЕ КОРПУСА ВЫСОКОСКОРОСТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА (ВАРИАНТЫ) | 2019 |
|
RU2724188C1 |
Изобретение относится к области ракетной техники и может быть использовано при создании трубопроводов горячего газа двигательных установок летательных аппаратов. Трубопровод горячего газа состоит из цилиндрических металлических оболочек, заходящих друг в друга, соединенных между собой через уплотнительные кольца, с возможностью углового перемещения и защищенных изнутри последовательно теплозащитным покрытием и деталями из эрозионностойкого материала, которые образуют конический зазор. Поверхность конического зазора напротив потока горячего газа образована двумя коническими поверхностями. Вершина конического зазора направлена в сторону потока горячего газа. Торцовый стык цилиндрических деталей из эрозионностойкого материала выполнен в виде замка ступенчатой формы. Длина ступеней замка превышает величину конического зазора в осевом направлении. Обеспечивает отсутствие в вынужденных зазорах и стыках вихрей горячего газа и как следствие размыва теплозащитного покрытия и деталей из эрозионностойкого материала. 1 з.п. ф-лы, 1 ил.
1. Трубопровод горячего газа, состоящий из цилиндрических металлических оболочек, телескопически заходящих друг в друга, соединенных между собой через уплотнительные кольца и защищенных изнутри последовательно теплозащитным покрытием и деталями из эрозионностойкого материала, при этом в зоне телескопического соединения цилиндрические металлические оболочки соединены с возможностью углового перемещения, причем внешняя металлическая цилиндрическая оболочка выполнена с местным цилиндрическим расширением по наружному диаметру, заполненным теплозащитным покрытием, в которое заходит ответная часть соединения, выполненная также из теплозащитного покрытия, а детали из теплозащитного покрытия и эрозионностойкого материала образуют конический зазор, вершина которого направлена в сторону потока горячего газа, отличающийся тем, что поверхность внутренней металлической оболочки, на которой установлены уплотнительные кольца, выполнена конической, с вершиной, направленной в сторону потока горячего газа, а поверхность конического зазора, которая находится напротив потока горячего газа, образована двумя соосными коническими поверхностями, одна коническая поверхность, расположенная дальше от центральной оси газохода, параллельна конической поверхности ответной части, а вторая коническая поверхность выполнена с углом конусности, меньшим как минимум в два раза, чем угол конусности первой конической поверхности, при этом диаметр окружности пересечения конических поверхностей больше суммы внутреннего диаметра проходного сечения и удвоенной величины максимального конического зазора между параллельными плоскостями в радиальном направлении.
2. Трубопровод горячего газа по п. 1, отличающийся тем, что торцовый стык цилиндрических деталей из эрозионностойкого материала выполнен в виде замка ступенчатой формы, причем торец замка, расположенного ближе к оси трубопровода, находится дальше от входа горячего газа, чем торец замка, расположенного дальше от оси трубопровода, при этом в направлении оси трубопровода длина ступеней замка превышает величину конического зазора между параллельными плоскостями в том же направлении.
RU 2009136080 A, 10.04.2011 | |||
ТЕЛЕСКОПИЧЕСКОЕ СОЕДИНЕНИЕ ГАЗОВОДОВ | 2011 |
|
RU2460004C1 |
ГАЗОВЫЙ ТРАКТ | 1996 |
|
RU2121104C1 |
US 3276466 A, 04.10.1966. |
Авторы
Даты
2017-09-04—Публикация
2015-12-22—Подача