Изобретение относится к области цветной металлургии и может быть использовано в авиаракетостроении для изготовления различных деталей самолетов и вертолетов, корпусов ракет, обтекателей, топливных и кислородных баков, защитных оболочек для литий-ионных батарей, корпусов приборов, малоинерционных робототехнических модулей, различных рычагов, в автомобильной промышленности, в снаряжении для спорта и отдыха.
Известны способы дисперсного упрочнения алюминиевых сплавов путем введения в материал микро- или наночастиц, относящиеся к порошковой металлургии. В частности, в [1] используют добавление в алюминиевую матрицу частиц ультрадисперсных алмазов (УДА) с удельной поверхностью 300÷400 м2/г. Ввод и смешение УДА с упрочняемой фазой металла проводили в механическом активаторе в среде аргона в течение (3÷6) мин. После обработки в механическом активаторе проводилась нормализация порошка при Т=250÷300°С в течение 1 ч. Для получения упрочненного материала (алюминий) количество УДА составляло 0.5÷1.0%, 1.5÷2.5%, 10%, 20% от массы порошка алюминия (марки АСД). Полученная смесь порошков по вышеприведенной технологии засыпалась в пресс-форму и брикетировалась на гидравлическом прессе при давлении p=0.45 ГПа. После брикетирования проводилось спекание при следующих параметрах: давление p=1.0 ГПа, время 5 мин, температура Т=550÷600°С.
В другом способе получения металломатричного композита [2] осуществляют механическое легирование матричного материала наночастицами с твердостью, большей, чем у матрицы и с максимальным размером не более 50 нм. При этом содержание наночастиц в металломатричном композите составляло 0.05÷10 об.%. Способ позволяет повысить качество композита за счет однородного распределения упрочняющих частиц в матрице.
Известен способ [3] получения металломатричного композита, который содержит матрицу на основе алюминия и упрочняющие алмазные наночастицы, внедренные в матрицу в течение 0.2÷5 ч механического легирования. Материал обладает высокими прочностными характеристиками и обеспечивает возможность получения деталей с низкой шероховатостью поверхности.
Недостатком данных способов является использование методов порошковой металлургии, которые связаны с прессованием материала, что значительно ограничивает номенклатуру выпускаемых изделий.
Наиболее близким по техническому решению к заявляемому изобретению является принятый за прототип способ получения упрочненного сплава на основе алюминия, включающий введение лигатуры в расплав матрицы на основе алюминия при одновременном воздействии на расплав ультразвукового поля [4]. Этот способ включает получение лигатуры из смеси порошков алюминия и диборида или карбида титана ударно-волновым компактированием в виде стержней при содержании в лигатуре 5 мас.% порошка диборида или карбида титана с размером частиц 1÷5 мкм и введение полученных стержней в расплав алюминиевой основы, разогретой до 720°С, при одновременном воздействии на расплав ультразвукового поля. Изобретение направлено на повышение прочности и износостойкости сплавов.
Техническим результатом настоящего изобретения является разработка способа получения дисперсно-упрочненного нанокомпозитного материала на основе алюминия с повышенными значениями прочности, твердости и пластичности.
Технический результат достигается тем, что разработан способ получения дисперсно-упрочненного нанокомпозитного материала на основе алюминия, включающий введение лигатуры в расплав матрицы на основе алюминия при одновременном воздействии на расплав ультразвукового поля. Лигатуру готовят в виде компактированных стержней из равномерно перемешанной смеси, состоящей из 90 мас.% порошка алюминия микронных размеров и 10 мас.% нанопорошка алмаза с диаметром частиц 4÷6 нм. Полученные стержни вводят в расплав матрицы на основе алюминия с обеспечением содержания нанопорошка алмаза в получаемом нанокомпозитном материале 0.1÷0.5 мас.% и выдерживают в нем не менее 10 мин при одновременном воздействии на расплав ультразвукового поля интенсивностью 20÷22 Вт/см2.
Полученный положительный эффект изобретения обусловлен следующими факторами.
1. Использование наночастиц алмаза с диаметром частиц в диапазоне 4÷6 нм обеспечивает возможность реализации механизма дисперсного упрочнения [5].
2. Использование лигатуры в виде компактированной шихты из 90 мас.% порошка алюминия и 10 мас.% нанопорошка алмаза позволяет сохранять неизменным химический состав матричного материала.
3. Содержание наночастиц алмаза в матричном материале в количестве 0.1÷0.5 мас.% позволяет достичь больших значений прочности относительно других концентраций, что было определено экспериментально.
4. Ультразвуковая обработка способствует равномерному распределению наночастиц алмаза в матрице основного металла и дегазации сплава для уменьшения его дефектности [6].
5. Интенсивность ультразвукового излучения в диапазоне 20÷22 Вт/см2 определена экспериментально и обусловлена реализацией в данном режиме обработки эффекта развитой кавитации, что способствует смачиванию наноразмерных частиц [7].
6. Время ультразвуковой обработки расплава выбрано с учетом литературных данных, которые свидетельствуют о гомогенном распределении частиц средним размером до 100 нм [8].
Пример реализации способа
В качестве исходных порошков для получения лигатур, используемых в предлагаемом способе для эффективного введения упрочняющих наночастиц, были взяты нанопорошок алмаза, полученный методом детонационного синтеза, и микропорошок алюминия марки АСД-6 (средний размер частиц 20 мкм). Для получения лигатур в виде прутков готовили смесь из нанопорошка алмаза и порошка алюминия в массовом соотношении 10-90%, соответственно. Полученную механическую смесь порошков помещали в контейнер, представляющий собой алюминиевую трубку длиной 400 мм, диаметром 10 мм (толщина стенки составляла 1 мм), закрытую с обеих сторон заглушками. Далее осуществляли взрывное компактирование по способу, описанному в [4].
Для получения дисперсно-упрочненных алюминиевых сплавов в качестве матричного материала был взят сплав марки АК7, содержащий 89.6÷93.8 мас.% алюминия, 6÷8 мас.% кремния, до 1.5 мас.% железа, до 0.5 мас.% марганца, остальное - примеси [9]. Плавку проводили в тигле в муфельной печи при температуре 720÷740°С, затем в тигель помещали предварительно нагретый ультразвуковой волновод. Глубина погружения волновода составляла 1÷2 см. После этого включали ультразвуковой генератор. При этой температуре проводили ультразвуковую дегазацию расплава в течение 1 мин, затем одновременно с ультразвуковой обработкой в расплав вводили заданное количество лигатуры. Далее выдерживали расплав в условиях поддержания температуры 720÷740°С и обрабатывали ультразвуком в течение не менее 10 мин. Затем проводили заливку расплава в кокиль.
Были проведены механические испытания полученных дисперсно-упрочненных нанокомпозитных материалов с целью определения механических свойств (предела текучести, предела прочности, твердости и пластичности). Полученные результаты сравнивались со свойствами прототипа - сплава АК7 без добавок наночастиц алмаза.
С целью исследований механических свойств сплава были подготовлены образцы в виде лопаток согласно ГОСТ 1497-84 [10]. Испытание образцов на растяжение проводили на Универсальной испытательной машине Instron 3369 со скоростью движения подвижного траверса 0.2 мм/мин.
Исследования показали, что среднее значение предела прочности для прототипа составило 145 МПа, в свою очередь, для дисперсно-упрочненного нанокомпозитного материала это значение составило 215 МПа. Таким образом, наблюдается увеличение значения прочности при растяжении почти в два раза.
Величины предела текучести и твердости также увеличивается с 65 до 90 МПа и с 40 до 60 НВ, соответственно.
Было установлено, что помимо увеличения прочностных свойств и твердости материалов, увеличилась пластичность материала (от 1.4% для прототипа до 1.8% для дисперсно-упрочненного нанокомпозитного материала).
Таким образом, приведенный пример реализации показывает, что заявляемый способ позволяет получить положительный технический результат изобретения, а именно увеличение предела прочности, предела текучести при растяжении почти в два раза с одновременным увеличением пластичности и твердости дисперсно-упрочненного нанокомпозитного материала на основе алюминия.
ЛИТЕРАТУРА
1. Патент РФ №2001718, МПК B22F 1/00. Способ получения дисперсно-упрочненного материала / С.П. Кожарский, В.Ф. Комаров, М.Г. Потапов, Е.А. Петров, А.Н. Попов, Г.В. Сакович, В.Н. Шалюта; опубл. 30.10.1993 г.
2. Патент РФ №2423539, МПК С22С 1/05. Металломатричный композит / В.А. Попов; опубл. 10.07.2011 г.
3. Патент РФ №2456361, МПК С22С 1/05. Металломатричный композит / В.А. Попов; опубл. 20.07.2012 г.
4. Патент РФ №2542044, МПК С22С 1/03. Способ получения упрочненных сплавов на основе алюминия / А.Б. Ворожцов, С.А. Ворожцов, В.А. Архипов, С.Н. Кульков, Э.Р. Шрагер; опубл. 20.02.2015 г.
5. Конева Н.А. Физика прочности металлов и сплавов // Соросовский образовательный журнал. 1997. №7. С. 95-102.
6. Добаткин В.И., Эскин Г.И., Абрамов О.В. Воздействие мощного ультразвука на межфазную поверхность металлов // М.: Наука, 1986. - 276 с.
7. Эскин Г.И. Влияние кавитационной обработки расплава на структуру и свойства литых и деформированных легких сплавов // Вестник Российской академии естественных наук, 2010, №3, С. 82-89.
8. Повышение эффективности технологических процессов в поле акустических колебаний: сб. статей / под ред. Н.Н. Хавского. - М.: МИСиС, 1981.-132 с.
9. ГОСТ 1583-93. Сплавы алюминиевые литейные. Технические условия.
10. ГОСТ 1497-84. Методы испытаний на растяжение.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения упрочненного нанокомпозиционного материала на основе магния | 2015 |
|
RU2621198C2 |
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННЫХ АЛЮМИНИЕВЫХ СПЛАВОВ | 2014 |
|
RU2567779C1 |
СПОСОБ УПРОЧНЕНИЯ ЛЕГКИХ СПЛАВОВ | 2012 |
|
RU2487186C1 |
СПОСОБ ПОЛУЧЕНИЯ УПРОЧНЕННЫХ СПЛАВОВ НА ОСНОВЕ АЛЮМИНИЯ | 2013 |
|
RU2542044C1 |
Способ получения упрочненных алюминиевых сплавов | 2016 |
|
RU2631995C1 |
Способ получения порошковой смеси бидисперсных керамических и металлических частиц | 2020 |
|
RU2740495C1 |
Способ получения алюминиевого композита, упрочненного базальтом | 2023 |
|
RU2820862C1 |
СПОСОБ ПОЛУЧЕНИЯ БОРСОДЕРЖАЩЕГО МЕТАЛЛОМАТРИЧНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМИНИЯ В ВИДЕ ЛИСТОВ | 2014 |
|
RU2590429C1 |
Нейтронно-поглощающий алюмоматричный композитный материал, содержащий гадолиний, и способ его получения | 2017 |
|
RU2679020C2 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОСТРУКТУР, МОДИФИЦИРОВАННЫХ МЕТАЛЛОМ, ЛИГАТУРА ДЛЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ АЛЮМИНИЯ ИЛИ АЛЮМИНИЕВОГО СПЛАВА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2014 |
|
RU2593875C2 |
Изобретение относится к получению дисперсно-упрочненного нанокомпозитного материала на основе алюминия. Способ включает введение лигатуры в расплав матрицы на основе алюминия при одновременном воздействии на расплав ультразвукового поля. Лигатуру готовят в виде компактированных стержней из равномерно перемешанной смеси, состоящей из 90 мас.% порошка алюминия микронных размеров и 10 мас.% нанопорошка алмаза с диаметром частиц 4÷6 нм, полученные стержни вводят в расплав матрицы на основе алюминия с обеспечением содержания нанопорошка алмаза в получаемом нанокомпозитном материале 0,1÷0,5 мас.% и выдерживают в нем не менее 10 мин при одновременном воздействии на расплав ультразвукового поля интенсивностью 20÷22 Вт/см2. Обеспечивается повышение прочности, твердости и пластичности нанокомпозитного материала. 1 пр.
Способ получения дисперсно-упрочненного нанокомпозитного материала, включающий введение лигатуры в расплав матрицы на основе алюминия при воздействии на расплав ультразвукового поля, отличающийся тем, что предварительно получают лигатуру в виде компактированных стержней из равномерно перемешанной смеси, состоящей из 90% порошка алюминия микронных размеров и 10% нанопорошка алмаза с диаметром частиц в диапазоне 4÷6 нм, полученные стержни вводят в расплав матрицы и выдерживают не менее 10 мин при одновременном воздействии на расплав ультразвукового поля интенсивностью не менее 25 Вт/см2, при этом содержание нанопорошка алмаза в полученном материале составляет 0,1÷0,5 мас.%.
СПОСОБ ПОЛУЧЕНИЯ УПРОЧНЕННЫХ СПЛАВОВ НА ОСНОВЕ АЛЮМИНИЯ | 2013 |
|
RU2542044C1 |
МЕТАЛЛОМАТРИЧНЫЙ КОМПОЗИТ | 2011 |
|
RU2456361C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОМАТРИЧНОГО КОМПОЗИТА | 2009 |
|
RU2423539C2 |
ЛИТОЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2013 |
|
RU2516679C1 |
JP 9184036 A, 15.07.1997 | |||
WO 1996030550 A1, 03.10.1996. |
Авторы
Даты
2017-09-29—Публикация
2015-12-01—Подача