Гибридная пористая конструкция для замещения костно-хрящевых дефектов Российский патент 2017 года по МПК A61F2/28 A61F2/30 

Описание патента на изобретение RU2632785C1

Изобретение представляет собой гибридную многослойную конструкцию на основе биосовместимого сверхвысокомолекулярного полиэтилена, содержащую пористый слой, для изготовления протезов, скаффолдов и биоимплантатов, предназначенных для замещения костно-хрящевых дефектов человека и животных. Областью применения заявляемого изобретения являются медицина и ветеринария, в частности реконструктивная хирургия, ортопедия, онкология, трансплантология и травматология.

Известно изобретение (RU 2357702 Имплантат для замещения костных фрагментов), представляющее собой опорный каркас из проволочной сетки, проволоки которой имеют преимущественное направление, совпадающее с направлением максимальных нагрузок со стороны окружающей ткани, в приосевой области установлен скрепленный с опорным каркасом и элементом связи стержень из титана или титанового сплава, а элементы связи выполнены из пористой кальций-фосфатной керамики.

Недостатками данного изобретения несовпадение физико-механических характеристик костной ткани и предлагаемой конструкции (за счет применения стержней из титана, титанового сплава и керамических элементов связи жесткость и модуль Юнга заметно превышают таковые для костной ткани), что ухудшает иммобилизацию в кости, повышает риск повторных переломов, малигнизации и возникновения злокачественных новообразований в области контакта. Наличие металлических и керамических компонентов также не дает возможности обеспечивать индивидуальную подгонку формы и размеров конструкции в ходе операции, за счет разницы физических свойств делает непрочной границу между каркасом и элементами связи, что может привести к расслоению и отделению частиц при пролонгированной эксплуатации, предполагает невысокие характеристики пластичности при изгибе, ударопрочности и трещиностойкости конструкции. Разность в химическом составе и жесткости конструкции указанного имплантата ограничивает ее применение для замещения дефектов хрящевой ткани, покрывающей эпифизарные части костей.

Также известно изобретение (US 20080287990 A Elongated Surgical Repair Product Based on Uhmwpe Filaments), представляющее конструкцию из волокон сверхвысокомолекулярного полиэтилена для использования в восстановительной хирургии.

Недостатком указанного изобретения является отсутствие пористой структуры, соответствующей костной ткани, что препятствует проникновению клеток реципиента в объем имплантата, а следовательно, формированию прочной костной мозоли в области контакта, фиксирующей имплантат в кости.

Прототипом заявляемого изобретения является медицинский пористый имплантат на основе сверхвысокомолекулярного полиэтилена с малой объемной пористостью и узким диапазоном размеров пор (US 7781526 В2 «Medical implant or medical implant part comprising porous UHMWPE and process for producing the same»).

Недостатком упомянутого изобретения является низкая объемная пористость, менее 60%, и узкий диапазон размеров пор, что может негативно сказаться на скорости адгезии и колонизации клеток прилегающих тканей в области имплантации, отличающихся многообразием морфологии и размеров, замедляя скорость фиксации имплантата. для успешной регенерации определенных клеток требуются точные значения геометрических параметров. Из-за наличия сравнительно больших открытых пор такой имплантат нельзя применять для замещения хрящевых дефектов ввиду невозможности формирования им гладкой суставной поверхности на эпифизах костей, необходимой для оптимальной работы сустава. Кроме того, данный имплантат целиком выполнен из пористого материала, что не соответствует морфологическим особенностям костной стенки, внешний слой которой является компактным и несет основную механическую нагрузку.

Технический результат заявляемого изобретения заключается в создании гибридной многослойной конструкции с пористым и сплошным слоем для замещения костно-хрящевых дефектов, характеризующаяся:

- биосовместимостью,

- высокой пластичностью при изгибе и сжатии,

- ударопрочностью и трешиностойкостью,

- показателем модуля Юнга, близким к таковому трабекулярной кости,

- возможностью индивидуальной тонкой подгонки формы и размеров в ходе операции в соответствии с характеристиками дефектного участка кости пациента,

- наличием одновременно сплошного слоя и пористого слоя, повторяющего структурные особенности морфологии костной стенки,

- наличием прочной границы между пористым и сплошным слоем, предотвращающем расслоение и отделение частиц при механическом деформировании конструкции.

Технический результат достигается следующим образом:

Гибридная пористая многослойная конструкция для замещения костно-хрящевых дефектов содержит пористый слой на основе сверхвысокомолекулярного полиэтилена. Конструкция дополнительно содержит сплошной слой на основе сверхвысокомолекулярного полиэтилена поверх пористого слоя с обеспечением прочной границы между слоями, предотвращающей расслоение и отделение частиц при механическом деформировании конструкции, при этом конструкция повторяет особенности костной стенки в соответствии с характеристиками дефектного участка кости пациента, причем пористый слой имеет открытую пористость 50-90% об. и связанную систему пор с диаметром 50-1000 мкм.

Конструкция выполнена в форме, обеспечивающей ее конгруэнтность относительно замещаемого дефекта кости или хряща. Биосовместимость обеспечивается за счет химического состава, а именно выполнения конструкции из сверхвысокомолекулярного полиэтилена, разрешенного для медицинского применения. Повторение структурных особенностей стенки кости обеспечивается чередованием слоев, а также наличием открытой пористости (% об.) от 50 до 90 и диаметром пор 50-1000 мкм.

Открытые и взаимосвязанные поры (более 50% об.) позволяют питательным веществам и молекулам проникать к внутренним частям конструкции, чтобы облегчить врастание клеток, вакскуляризацию, а также удаление отходов.

Прорастание костной ткани лучше всего происходит в пористых структурах с размерами пор 450 мкм, тогда как соединительная ткань лучше растет в порах размером менее 100 мкм, а сосудистая ткань идеально прикрепляется и растет в порах размером порядка 1000 мкм. Следовательно, широкий диапазон пор 50-1000 мкм нужно создавать для обеспечения возможности прорастания различных типов тканей в костно-хрящевом дефекте и прохождения васкуляризации.

Механические характеристики, необходимые для выполнения конструкцией опорной функции обеспечиваются за счет наличия гибридной многослойной конструкции с прочно связанными между собой слоями с пределом прочности при сжатии более 70 МПа, модулем Юнга более 0.7 ГПа и отсутствием расслоения, разрушения и отделения частиц полимера до 40% деформации конструкции при сжатии. Пластичность, повышенная ударопрочность с одновременной возможностью индивидуальной подгонки режущим инструментом в ходе операции обеспечиваются за счет выполнения конструкции с ударной вязкостью более 50 кДж/м2 из сверхвысокомолекулярного полиэтилена.

Возможность промышленной применимости предлагаемой конструкции и ее использования в медицине подтверждается следующим примером реализации.

Изобретение поясняется чертежами, где на фиг. 1 показан пример микрофотографии, полученной методом сканирующей электронной микроскопии, демонстрирующей границу между пористым и сплошным слоем без видимых дефектов и трещин и с полным сплавлением частиц сверхвысокомолекулярного полиэтилена. По микрофотографии можно также судить о пористой структуре конструкции. На фиг. 2 показан пример выполнения гибридных многослойных пористых конструкций в виде изделий различной формы: пластины, цилиндры, цилиндр в разрезе. На фиг. 3 продемонстрирована высокая пластичность гибридной пористой конструкции, выполненной в форме пластины, при сжатии. Демонстрируется срез конструкции с участками растяжения и сжатия. Отсутствуют растрескивание конструкции, расслоение и разрушение. На фиг. 4 показан пример диаграммы деформации гибридной многослойной пористой конструкции при сжатии. Наблюдается предел прочности 80 МПа при деформации более 40%.

Пример 1.

В качестве исходного материала использовался порошок сверхвысокомолекулярного полиэтилена производства Ticona, Celanese. Сформирована гибридная пористая многослойная конструкция цилиндрической формы высотой 20 мм и диаметром 10 мм, состоящая из пористого и сплошного слоя, со средним диаметром пор 50 мкм. Объемная пористость - 85% об. Предел прочности на сжатие - 90 МПа, модуль Юнга при сжатии - 1.0 ГПа, отсутствие расслоения, разрушения и отделения частиц полимера до 45% деформации конструкции при сжатии. При изгибе под 45° - отсутствие расслоения, разрушения и отделения частиц полимера. Ударная вязкость по Шарпи без надреза 65 кДж/м2.

Пример 2.

В качестве исходного материала использовался порошок сверхвысокомолекулярного полиэтилена марки производства Ticona, Celanese. Сформирована гибридная пористая многослойная конструкция, состоящая из пористого и сплошного слоя, со средним диаметром пор 1000 мкм. Объемная пористость - 50% об. Предел прочности на сжатие - 70 МПа, модуль Юнга при сжатии - 0.71 ГПа, отсутствие расслоения, разрушения и отделения частиц полимера до 42% деформации конструкции при сжатии. При изгибе под 45° - отсутствие расслоения, разрушения и отделения частиц полимера. Ударная вязкость по Шарпи без надреза 53 кДж/м2. При ортотопической имплантации заявляемой конструкции цилиндрической формы лабораторным животным (крысы линии Вистар, самцы, m=200±11 г) в искусственно сформированный дефект большеберцовой кости на 30 дней было установлено сохранение опорной функции конечностей животного за счет оптимальных механических характеристик имплантированной конструкции, отсутствие признаков воспаления или отторжения за счет ее биосовместимости. Сохранение исходной микроструктуры полиэтилена конструкции с колонизацией клетками крысы губчатого слоя, обеспечившей плотную фиксацию в кости реципиента, были установлены при гистологическом анализе извлеченного образца, что доказывает как хорошие эксплуатационные качества конструкции (пластичность при изгибе и сжатии, ударопрочность и трещиностойкость), обусловленные описанными в примере выше механическими характеристиками, так и оптимально подобранный размер и характер пор губчатого слоя.

Похожие патенты RU2632785C1

название год авторы номер документа
Биоинженерная конструкция с антибактериальным покрытием для замещения костно-хрящевых дефектов 2016
  • Максимкин Алексей Валентинович
  • Сенатов Фёдор Святославович
  • Анисимова Наталья Юрьевна
  • Киселевский Михаил Валентинович
  • Залепугин Дмитрий Юрьевич
  • Тилькунова Наталия Александровна
  • Чернышова Ирина Валерьевна
  • Калошкин Сергей Дмитриевич
RU2634860C1
Гибридная металлополимерная конструкция медицинского назначения 2018
  • Максимкин Алексей Валентинович
  • Сенатов Фёдор Святославович
  • Калошкин Сергей Дмитриевич
  • Чуков Дилюс Ирекович
  • Салимон Алексей Игоревич
  • Няза Кирилл Вячеславович
RU2708528C1
Гибридная пластина для краниопластики 2019
  • Максимкин Алексей Валентинович
  • Сенатов Фёдор Святославович
  • Калошкин Сергей Дмитриевич
  • Чуков Дилюс Ирекович
  • Анисимова Наталья Юрьевна
  • Киселевский Михаил Валентинович
RU2743108C1
Биоактивный полимерный пористый каркас 2016
  • Сенатов Фёдор Святославович
  • Няза Кирилл Вячеславович
  • Максимкин Алексей Валентинович
  • Анисимова Наталья Юрьевна
  • Киселевский Михаил Валентинович
  • Чердынцев Виктор Викторович
  • Калошкин Сергей Дмитриевич
  • Эстрин Юрий Захарович
  • Медведев Виктор Вячеславович
RU2665175C2
БИОИНЖЕНЕРНАЯ КОНСТРУКЦИЯ ДЛЯ ЗАКРЫТИЯ КОСТНЫХ ДЕФЕКТОВ С ВОССТАНОВЛЕНИЕМ В НИХ КОСТНОЙ ТКАНИ И СПОСОБ ПОЛУЧЕНИЯ УКАЗАННОЙ КОНСТРУКЦИИ 2009
  • Кулаков Анатолий Алексеевич
  • Григорьян Алексей Суренович
  • Киселёва Екатерина Владимировна
  • Филонов Михаил Рудольфович
  • Штанский Дмитрий Владимирович
RU2416434C1
Полимерный вкладыш ацетабулярного компонента эндопротеза с биоактивным пористым слоем для остеосинтеза 2019
  • Максимкин Алексей Валентинович
  • Сенатов Фёдор Святославович
  • Калошкин Сергей Дмитриевич
  • Чуков Дилюс Ирекович
RU2725063C1
Скаффолд для замещения костных дефектов 2020
  • Тимощук Елена Игоревна
  • Пономарева Дарья Владимировна
  • Самойлов Владимир Маркович
  • Зейналова Сакира Зульфуевна
RU2768571C1
СПОСОБ УСТРАНЕНИЯ КОСТНЫХ ДЕФЕКТОВ С ВОССТАНОВЛЕНИЕМ В НИХ КОСТНОЙ ТКАНИ 2009
  • Григорьян Алексей Суренович
  • Кулаков Анатолий Алексеевич
  • Киселёва Екатерина Владимировна
  • Филонов Михаил Рудольфович
RU2449755C2
Способ устранения дефектов и деформаций нижней челюсти 2018
  • Байриков Иван Михайлович
  • Слесарев Олег Валентинович
  • Тюмина Ольга Владимировна
  • Овчинников Павел Анатольевич
  • Волчков Станислав Евгеньевич
  • Дедиков Дмитрий Николаевич
  • Мальчикова Дарья Вячеславовна
  • Пряников Кирилл Вадимович
RU2734756C2
СПОСОБ КОНТУРНОЙ ПЛАСТИКИ, ВОССТАНОВЛЕНИЯ, КОРРЕКЦИИ, УСТРАНЕНИЯ ИЛИ ЗАМЕЩЕНИЯ ДЕФЕКТОВ, ПОВРЕЖДЕНИЙ ИЛИ ДЕФОРМАЦИЙ КОСТНОЙ ИЛИ ХРЯЩЕВОЙ ТКАНИ И ИМПЛАНТАТ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2002
  • Кабаргин С.Л.
  • Соловьев М.М.
  • Иванова Л.П.
  • Малышева Н.М.
  • Огородников В.Б.
RU2218895C1

Иллюстрации к изобретению RU 2 632 785 C1

Реферат патента 2017 года Гибридная пористая конструкция для замещения костно-хрящевых дефектов

Изобретение относится к медицине. Гибридная пористая многослойная конструкция для замещения костно-хрящевых дефектов содержит пористый слой на основе сверхвысокомолекулярного полиэтилена, также содержит сплошной слой на основе сверхвысокомолекулярного полиэтилена поверх пористого слоя с обеспечением прочной границы между слоями, конструкция повторяет особенности костной стенки в соответствии с характеристиками дефектного участка кости пациента, пористый слой имеет открытую пористость 50-90 об.% и связанную систему пор с диаметром 50-1000 мкм. Устройство предотвращает расслоение и отделение частиц при механическом деформировании конструкции, обладает ударопрочностью, износостойкостью.

Формула изобретения RU 2 632 785 C1

Гибридная пористая многослойная конструкция для замещения костно-хрящевых дефектов, содержащая пористый слой на основе сверхвысокомолекулярного полиэтилена, отличающаяся тем, что конструкция дополнительно содержит сплошной слой на основе сверхвысокомолекулярного полиэтилена поверх пористого слоя с обеспечением прочной границы между слоями, предотвращающей расслоение и отделение частиц при механическом деформировании конструкции, при этом конструкция повторяет особенности костной стенки в соответствии с характеристиками дефектного участка кости пациента, причем пористый слой имеет открытую пористость 50-90 об.% и связанную систему пор с диаметром 50-1000 мкм.

Документы, цитированные в отчете о поиске Патент 2017 года RU2632785C1

US 7781526 B2, 24.08.2010
Тело накала для электрических ламп накаливания 1929
  • Улитовский А.В.
SU25996A1
Колошниковый затвор 1926
  • Дуткевич А.А.
SU11114A1
СОВЕТНИКОВ Н.Н
и др
Клеточные технологии и тканевая инженерия в лечении дефектов суставной поверхности
Клиническая практика, 2013, 1, 52-66
CHANG N.J
et al
Positive effects of cell-free porous PLGA implants and early loading exercise on hyalinecartilage regeneration in rabbits
Acta Biomater
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1

RU 2 632 785 C1

Авторы

Сенатов Фёдор Святославович

Максимкин Алексей Валентинович

Анисимова Наталья Юрьевна

Киселевский Михаил Валентинович

Калошкин Сергей Дмитриевич

Чердынцев Виктор Викторович

Даты

2017-10-09Публикация

2016-06-28Подача