СПОСОБ ИЗМЕРЕНИЯ ФУНКЦИИ РАСПРЕДЕЛЕНИЯ КОЛЛОИДНЫХ ЧАСТИЦ ПО РАЗМЕРАМ В ВОДНОМ РАСТВОРЕ Российский патент 2017 года по МПК G01N15/02 G01N27/06 G06F17/18 

Описание патента на изобретение RU2634096C1

Изобретение относится к физике коллоидов и может быть использовано для определения функции распределения коллоидных частиц по размерам.

Существующие методы измерения размеров наночастиц, в том числе и коллоидных [В.А.Волков Коллоидная химия (Поверхностные явления и дисперсные системы). Учебник. МГТУ им. А.Н. Косыгина. М., 2001, 640 с.], в большинстве случаев основаны на явлении динамического рассеяния света (ДРС) (фотонной корреляционной спектроскопии), а именно - на измерении флуктуации интенсивности лазерного излучения, рассеянного коллоидными частицами, совершающими броуновское движение под действием ударов молекул жидкости [B.J. Berne, R. Pecora. Dynamic light scattering with application to chemistry, biology and physics. Dover Publ. Inc. NY (2000); H.G.Merkus. Particle size measurements: fundamentals, practice, quality. Springer Science + Business Media B.V. NY (2009)].

Основным недостатком метода ДРС является то, что для полидисперсных систем вклад малых частиц маскируется вкладом больших частиц. Это связано с тем, что в релеевском пределе, справедливом для субмикронных частиц, вероятность рассеяния света пропорционально 6-й степени их эффективного радиуса [М. Борн, Э. Вольф. Основы оптики. М., Наука, 1973]. Поэтому, например, если в растворе содержится 2%-ная фракция больших частиц, радиус которых всего в 2 раза превышает радиус частиц основной 98%-ной фракции, вклад обеих фракций в общую интенсивность рассеянного света будет сравним. Если же радиус малого числа больших частиц в 10 раз превышает радиус частиц основной фракции, то равенство интенсивностей рассеянного света наступает уже при концентрации больших частиц, составляющей 10-6 от концентрации частиц основной фракции.

Известны модификации оптических (включая волноводные) методов определения размеров коллоидных частиц [Патенты РФ №2321840, МПК G01N 15/02, опубл. 03.07.2006; РФ №2351912, МПК G01N 15/02, опубл. 20.11.2007; РФ №2460988, МПК G01N 15/02, G01N 21/51, опубл. 01.06.2011)]. Все они отличаются сложностью и высокой стоимостью приборной базы, необходимостью точной юстировки оптических схем, а в некоторых случаях и использованием эталонных объектов.

Известные способы соответствующих ультразвуковых измерений [РФ №2376581, МПК G01N 15/02, опубл. 09.12.2004] пригодны для определения размеров макрочастиц, но не могут быть применены для систем из субмикронных и наночастиц.

Наиболее близким является способ по заявке РФ №2013115018 (МПК G01N 15/02, опубл. 10.10.2014) авторов настоящего изобретения, согласно которому гидродинамический радиус коллоидных частиц вычисляют из зависимости от коэффициентов вращательной диффузии диспергированных частиц, измерение которого проводят в ячейке, представляющей собой плоский конденсатор, после поляризации раствора.

Задачей настоящего изобретения является повышение чувствительности и точности при нахождении функции распределения коллоидных частиц по размерам без усложнения методики измерения.

Технический результат заключается в разработке простого и недорогого способа измерения распределения размеров частиц, позволяющего с высокой надежностью определять распределение по размерам коллоидных частиц.

Технический результат достигается тем, что в способе измерения функции распределения коллоидных частиц по размерам в водных растворах, включающем помещение исследуемого коллоидного раствора в ячейку, представляющую собой плоский конденсатор, поляризацию раствора под действием внешнего электрического поля с напряженностью 1 - 103 В/см, измерение характеристик среды, их компьютерную обработку, согласно изобретению измеряемыми характеристиками среды являются частотная зависимость импеданса Z(ω) и угла ϕ(ω) сдвига фаз, на основе которых компьютерной обработкой получают выражение для действительной ε' и мнимой ε'' диэлектрических проницаемостей, сумма которых описывается формулой

где E - напряженность электрического поля, di, ni и τi - дипольный момент, концентрация частиц в суспензии и время релаксации частиц i-го типа, а дипольный момент является функцией радиуса частицы di=d(ri), из полученного выражения для диэлектрических проницаемостей компьютерной обработкой производят построение гистограммы распределения коллоидных частиц, ордината которой пропорциональна радиусу ri коллоидной частицы i-го типа, а центр столбца по оси абсцисс расположен в значении средней концентрации частиц i-го типа.

Известно, что коллоидные частицы в воде приобретают постоянный дипольный момент вследствие «прилипания» молекул воды к поверхности коллоидной частицы [Н.А. Толстой, А.А. Спартаков. Электрооптика и магнитооптика дисперсных систем. Изд-во СПбГУ, 1996]. Коллоидный раствор, помещенный в ячейку, представляющую собой плоский конденсатор, между обкладками которого приложено внешнее напряжение, поляризуется под действием внешнего электрического поля: дипольные моменты коллоидных частиц ориентируются преимущественно вдоль поля. После выключения поля начинается процесс диэлектрической релаксации, вызванный тепловой разориентацией дипольных моментов частиц, что приводит к временному изменению диэлектрического отклика системы (коллоидного раствора), измеряемого с помощью RLC-метра или измерителя импеданса.

Измеряется частотная зависимость импеданса Z и угла ϕ сдвига фаз, по которым рассчитываются в автоматическом режиме действительная ε' и мнимая ε'' части диэлектрической проницаемости. Из этих зависимостей с помощью специальной компьютерной программы находится распределение частиц по размерам.

Похожие патенты RU2634096C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ СВОЙСТВ МНОГОКОМПОНЕНТНОГО ДИЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА 2006
  • Хазанов Александр Алексеевич
  • Силин Николай Витальевич
  • Гончаров Евгений Николаевич
  • Кац Марат Абрамович
RU2317538C1
ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА НЕФТИ В ПЛАСТЕ МЕТОДОМ ДИЭЛЕКТРИЧЕСКОЙ СПЕКТРОСКОПИИ 2016
  • Доровский Виталий Николаевич
  • Гапейев Денис Николаевич
  • Ельцов Тимофей Игоревич
RU2670083C2
Способ определения комплексной диэлектрической проницаемости биологической клетки в суспензии 2018
  • Генералов Владимир Михайлович
  • Сафатов Александр Сергеевич
  • Наумова Ольга Викторовна
  • Генералов Константин Владимирович
  • Фомин Борис Иванович
  • Кручинина Маргарита Витальевна
  • Громов Андрей Александрович
  • Буряк Галина Алексеевна
RU2706429C1
ОПРЕДЕЛЕНИЕ ФРАКЦИИ СВЯЗАННОГО УГЛЕВОДОРОДА И ПОРИСТОСТИ ПОСРЕДСТВОМ ДИЭЛЕКТРИЧЕСКОЙ СПЕКТРОСКОПИИ 2014
  • Доровский Виталий Николаевич
RU2684437C2
СПОСОБ ЭКСПРЕСС-АНАЛИЗА ЖИДКИХ ФАСОВАННЫХ ПРОДУКТОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2018
  • Белозеров Валерий Владимирович
  • Лукьянов Александр Дмитриевич
  • Обухов Павел Серафимович
  • Абросимов Дмитрий Владимирович
  • Любавский Алексей Юрьевич
  • Белозеров Владимир Валерьевич
RU2696810C1
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ДИЭЛЕКТРИЧЕСКОЙ РЕЛАКСАЦИИ 1992
  • Потапов А.А.
RU2112233C1
СПОСОБ И АППАРАТ ДЛЯ ТОМОГРАФИЧЕСКИХ ИЗМЕРЕНИЙ МНОГОФАЗНОГО ПОТОКА 2006
  • Вее Арнстейн
  • Шельдаль Ингве Мортен
RU2418269C2
Способ магнитоиндукционной томографии 2018
  • Юнг Борис Николаевич
RU2705239C1
Способ магнитоиндукционной томографии 2018
  • Юнг Борис Николаевич
RU2705248C1
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ПОВЕРХНОСТНЫХ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В ПЛАЗМЕННЫХ ОБРАЗОВАНИЯХ КОНЕЧНОЙ ДЛИНЫ 2020
  • Ковалев Александр Сергеевич
  • Кленов Николай Викторович
  • Вожаков Всеволод Андреевич
  • Аджемов Сергей Сергеевич
  • Терешонок Максим Валерьевич
RU2756460C1

Реферат патента 2017 года СПОСОБ ИЗМЕРЕНИЯ ФУНКЦИИ РАСПРЕДЕЛЕНИЯ КОЛЛОИДНЫХ ЧАСТИЦ ПО РАЗМЕРАМ В ВОДНОМ РАСТВОРЕ

Изобретение относится к физике коллоидов и может быть использовано для определения функции распределения коллоидных частиц по размерам. Заявлен способ измерения функции распределения коллоидных частиц по размерам в водных растворах, включающий помещение исследуемого коллоидного раствора в ячейку, представляющую собой плоский конденсатор, поляризацию раствора под действием внешнего электрического поля с напряженностью 1-103 В/см, измерение характеристик среды, их компьютерную обработку. Согласно изобретению измеряемыми характеристиками среды являются частотная зависимость импеданса Z(ω) и угла ϕ(ω) сдвига фаз, на основе которых компьютерной обработкой получают выражение для действительной ε' и мнимой ε'' диэлектрических проницаемостей, сумма которых описывается формулой

где E - напряженность электрического поля, di, ni и τi - дипольный момент, концентрация частиц в суспензии и время релаксации частиц i-го типа, а дипольный момент является функцией радиуса частицы di=d(ri), из полученного выражения для диэлектрических проницаемостей компьютерной обработкой производят построение гистограммы распределения коллоидных частиц, ордината которой пропорциональна радиусу ri коллоидной частицы i-го типа, а центр столбца по оси абсцисс расположен в значении средней концентрации частиц i-го типа. Технический результат - повышение точности и надежности определения распределения по размерам коллоидных частиц.

Формула изобретения RU 2 634 096 C1

Способ измерения функции распределения коллоидных частиц по размерам в водных растворах, включающий помещение исследуемого коллоидного раствора в ячейку, представляющую собой плоский конденсатор, поляризацию раствора под действием внешнего электрического поля с напряженностью 1-103 В/см, измерение характеристик среды, их компьютерную обработку, отличающийся тем, что измеряемыми характеристиками среды являются частотная зависимость импеданса Z(ω) и угла ϕ(ω) сдвига фаз, на основе которых компьютерной обработкой получают выражение для действительной ε' и мнимой ε'' диэлектрических проницаемостей, сумма которых описывается формулой

где Е - напряженность электрического поля, di, ni и τi - дипольный момент, концентрация частиц в суспензии и время релаксации частиц i-го типа, а дипольный момент является функцией радиуса частицы di=d(ri), из полученного выражения для диэлектрических проницаемостей компьютерной обработкой производят построение гистограммы распределения коллоидных частиц, ордината которой пропорциональна радиусу ri коллоидной частицы i-го типа, а центр столбца по оси абсцисс расположен в значении средней концентрации частиц i-го типа.

Документы, цитированные в отчете о поиске Патент 2017 года RU2634096C1

RU 2013115018 A, 10.10.2014
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ДИСПЕРСНЫХ ЧАСТИЦ 2007
  • Максачук Александр Иванович
  • Леонов Геннадий Валентинович
RU2346261C1
Измеритель концентрации аэрозоли 1978
  • Бачериков Владимир Всеволодович
  • Новиков Станислав Яковлевич
  • Степанов Борис Михайлович
  • Чеков Геннадий Николаевич
SU697899A1
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЧАСТИЦ, ВЗВЕШЕННЫХ В ЖИДКОСТИ, ПО СПЕКТРАМ МАЛОУГЛОВОГО РАССЕЯНИЯ СВЕТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Левин Александр Давидович
RU2321840C1
СПОСОБ ИЗМЕРЕНИЯ РАЗМЕРОВ ЧАСТИЦ В ЖИДКОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Коваленко Константин Васильевич
  • Кривохижа Светлана Владимировна
  • Чайков Леонид Леонидович
RU2351912C1
US 4779003 A, 18.10.1988.

RU 2 634 096 C1

Авторы

Лазарев Александр Петрович

Дрождин Сергей Николаевич

Зон Борис Абрамович

Даринский Борис Михайлович

Сигов Александр Сергеевич

Лунь Андрей Юрьевич

Мильцин Александр Николаевич

Даты

2017-10-23Публикация

2016-07-26Подача