Двухполюсный колесный электромеханический тормоз автомобиля Российский патент 2017 года по МПК H02K49/00 F16D55/22 F16D55/02 F16D63/00 B60L7/28 B60T13/74 

Описание патента на изобретение RU2634500C1

Изобретение относится к тормозным устройствам автомобиля. Известен дисковый электромеханический тормоз автомобиля, в котором дисковый тормозной механизм содержит суппорт, зажимное устройство, два установочных винта, регулировочное устройство и расположенный на тормозном рычаге, проходящий в направлении его поворота сегмент цилиндрического зубчатого колеса. Зажимное устройство имеет тормозной рычаг и расположено в суппорте дискового тормозного механизма. Два установочных винта расположены параллельно и независимо друг от друга с возможностью перемещения в аксиальном направлении посредством зажимного устройства. Регулировочное устройство позиционировано в суппорте дискового тормозного механизма, выполнено с возможностью приведения в действие посредством тормозного рычага и с возможностью за счет аксиального смещения установочного винта в основном компенсации обусловленного износом изменения воздушного зазора между тормозной накладкой и тормозным диском. Для осуществления регулировки сегмент цилиндрического зубчатого колеса находится в зацеплении с находящейся в рабочем соединении с установочным винтом шестерней с торцовыми зубьями. Шестерня без возможности проворачивания закреплена на установленном с возможностью вращения по центру между установочными винтами приводном винте, посредством которого через редуктор установочный винт может приводиться в действие. Сегмент цилиндрического зубчатого колеса монолитно соединен с тормозным рычагом, выполненным в виде литой детали (см. патент РФ №2542841 от 16.04.2010, МПК F16D 65/14, F16D 65/56). Недостатком аналога являются необходимость тормозного диска и устройств крепления его к колесу, а также трибопары тормозной накладки и тормозного диска, снижающие надежность тормоза.

Наиболее близким прототипом является дисковый тормоз, который содержит тормозной диск, расположенные по обе стороны от него тормозные колодки и дополнительную тормозную пару. Дополнительная тормозная пара состоит из двух электромагнитов, расположенных по двум сторонам тормозного диска. Электромагниты соединены магнитопроводом. Обмотки электромагнитов подсоединены к блоку управления. Достигается улучшение тормозных характеристик автомобиля за счет повышения надежности дискового тормоза, позволяющего изменять характеристики торможения в процессе торможения (см. патент РФ №2458267 от 14.10.2009, МПК F16D 55/32, F16D 63/00). Однако в описанной выше конструкции прототипа остается необходимость тормозного диска, на котором выполнены полюса, и устройств крепления его к колесу, а также трибопары тормозной накладки и тормозного диска, что приводит к снижению надежности тормоза.

Целью изобретения является повышение надежности двухполюсного колесного электромеханического тормоза автомобиля.

Поставленная цель достигается устранением в электромеханическом тормозе автомобиля диска, на котором выполнены полюса, и деталей крепления его к колесу.

Для этого на колесе автомобиля выполнены из магнитного материала колесные полюса, ориентированные радиально, смежная пара колесных полюсов располагается с минимальным воздушным зазором к полюсам электромагнита, закрепленного на поворотном кулаке переднего колеса автомобиля или на задней балке автомобиля. По окружности рядом с электромагнитным полюсом размещены датчики положения колесного полюса, подключенные своими выходами к входам управляющего устройства, соединенного своим выходом с входом коммутационного устройства, которое подключает электромагнитную обмотку к источнику электропитания. К другому входу управляющего устройства подключен выход устройства регулирования тормозной силы. Фиксатор колесного полюса, содержащий штифт фиксатора колесного полюса, закреплен на поворотном кулаке переднего колеса автомобиля или на задней балке автомобиля рядом с электромагнитным полюсом и траекторией движения колесного полюса. Прилагаемые чертежи изображают:

Фиг. 1 - колесо автомобиля с двухполюсным колесным электромеханическим тормозом автомобиля;

Фиг. 2 - колесо автомобиля с двухполюсным колесным электромеханическим тормозом автомобиля в разрезе А-А на фиг. 1;

Фиг. 3 - электрическая схема.

Перечень элементов на прилагаемых чертежах:

1 - диск колеса;

2 - колесный полюс;

3 - сердечник;

4 - электромагнитный полюс;

5 - электромагнитная обмотка;

6, 7, 8, 9 - датчики;

10 - управляющее устройство;

11 - устройство регулирования тормозной силы;

12 - коммутационное устройство;

13 - источник электропитания;

14 - ступица;

15 - шина;

16 - осевое отверстие;

17 - цифровой сигнальный процессор (DSP);

18 - цифровой сигнальный процессор (DSP);

19 - элемент 2ИЛИ;

20 - элемент 2ИЛИ;

21 - триггер RS;

22 - элемент 2И;

23 - фиксатор колесного полюса;

24 - штифт фиксатора колесного полюса.

Двухполюсный колесный электромеханический тормоз автомобиля состоит из: колесных полюсов 2 (см. фиг. 1 и фиг. 2), выполненных на диске колеса 1 автомобиля; электромагнита, включающего в себя сердечник 3, электромагнитные полюса 4 и электромагнитную обмотку 5; датчиков 6, 7, 8 и 9 положения колесных полюсов 2, управляющего устройства 10, устройства регулирования тормозной силы 11 и коммутационного устройства 12 (см. фиг. 3). Фиксатор колесного полюса 23, содержащий штифт фиксатора колесного полюса 24, закреплен на поворотном кулаке переднего колеса автомобиля или на задней балке автомобиля.

На фиг. 2 изображен двухполюсный колесный электромеханический тормоз автомобиля при положении колесных полюсов 2 напротив электромагнитных полюсов 4 в разрезе А-А на фиг. 1.

На фиг. 3 изображена электрическая схема двухполюсного колесного электромеханического тормоза автомобиля, содержащая: датчики 6, 7, 8 и 9, управляющее устройство 10, коммутационное устройство 12, обмотку электромагнита 5, источник электропитания 13 и устройство регулирования тормозной силы 11.

Двухполюсный колесный электромеханический тормоз автомобиля работает следующим образом.

Во время движения колесо автомобиля начинает вращаться по часовой стрелке (указано стрелками с пунктирной линией на фиг. 1) с закрепленными на диске колеса 1 колесными полюсами 2 (см. фиг. 1 и фиг. 2). При этом управляющее устройство 10 и коммутационное устройство 12 (см. фиг. 3) остаются постоянно включенными. Устройство фиксатора колесного полюса 23 не фиксирует своим штифтом фиксатора колесного полюса 24 колесный полюс 2.

В процессе вращения колесных полюсов 2 по часовой стрелке (см. фиг. 1) они периодически помещаются напротив датчиков 6, 7, 8 и 9.

В момент положения колесного полюса 2 напротив датчика 6 на выходе этого датчика 6 появляется электрический сигнал положительного уровня, соответствующий логической единице. Этот сигнал с выхода датчика 6 поступает на вход Х1 цифрового сигнального процессора 17. Затем колесный полюс 2, продолжая свое движение, занимает положение и напротив датчика 7, вследствие чего на его выходе появляется электрический сигнал положительного уровня, соответствующий логической единице. Этот сигнал поступает на вход Х2 цифрового сигнального процессора 17. Согласно алгоритму работы цифрового сигнального процессора 17, если вначале появляется сигнал логической единицы на его входе Х1, а затем появляется сигнал логической единицы на его на входе Х2, то в дальнейшем после перехода обоих сигналов до уровня напряжения, близкого к нулю, что соответствует логическому нулю на этих входах сигнального процессора 17, на его выходе V1 формируется прямоугольный электрический сигнал положительной полярности, соответствующий логической единице. Этот сигнал поступает на вход элемента 19, выполняющего логическую функцию 2ИЛИ. С выхода элемента 19 сигнал положительного уровня, соответствующий логической единице, поступает на вход S триггера 21, выполняющего логическую функцию триггера RS. При этом триггер 21 переходит в состояние, при котором на его выходе Q появляется электрический сигнал положительного уровня, соответствующий логической единице. Этот сигнал поступает на вход элемента 22, выполняющего логическую функцию 2И. При необходимости включения режима торможения с выхода устройства регулирования тормозной силы 11 (см. фиг. 3) подается широтно-импульсный модулированный электрический сигнал положительной полярности, который поступает на другой вход элемента 22 управляющего устройства 10. В этом случае с выхода элемента 22 на вход коммутационного устройства 12 поступает широтно-импульсный модулированный электрический сигнал положительной полярности. В результате коммутационное устройство 12 подключает один конец электромагнитной обмотки 5 к источнику электропитания 13, другой выход которого подсоединен непосредственно к другому концу электромагнитной обмотки 5. В это время (см. фиг. 1 и фиг. 2) смежные колесные полюса 2 занимают положение напротив электромагнитных полюсов 4. Магнитное поле, создаваемое электромагнитной обмоткой 5, проходит через один электромагнитный полюс 4, через рабочий воздушный зазор между электромагнитным полюсом 4 и колесным полюсом 2, через диск колеса 1, далее через смежный колесный полюс 2, через рабочий воздушный зазор между другим электромагнитным полюсом 4 и колесным полюсом 2 и через другой электромагнитный полюс 4 замыкается на сердечнике 3 электромагнита. Тем самым создаваемая магнитным полем сила взаимодействия между колесным полюсом 2 и электромагнитным полюсом 4 удерживает колесный полюс 2, передающий тормозную силу колесу автомобиля. В результате вращения колеса автомобиля далее, преодолевая тормозной импульс, созданный магнитным полем электромагнита, продолжают вращаться и его колесные полюса 2 начинают выходить из-под электромагнитных полюсов 4. При этом колесный полюс 2 вначале занимает положение напротив датчика 8, на выходе которого появляется электрический сигнал положительного уровня, соответствующий логической единице. Этот сигнал поступает на вход Х2 цифрового сигнального процессора 18. Затем колесный полюс 2, продолжая свое движение, занимает положение и напротив датчика 9, на выходе которого появляется электрический сигнал положительного уровня, соответствующий логической единице. Этот сигнал поступает на вход Х1 цифрового сигнального процессора 18. Согласно алгоритму работы цифрового сигнального процессора 18, если вначале появляется сигнал положительного уровня, соответствующий логической единице, на его входе Х2, а затем сигнал положительного уровня, соответствующий логической единице, на входе Х1, то в дальнейшем после перехода обоих сигналов до уровня напряжения, близкого к нулю, что соответствует логическому нулю на этих входах сигнального процессора 18, на его выходе V2 формируется прямоугольный электрический сигнал положительной полярности, соответствующий логической единице. Этот сигнал поступает на вход элемента 20, выполняющего логическую функцию 2ИЛИ. С выхода элемента 20 сигнал положительного уровня, соответствующий логической единице, поступает на вход R триггера 21, выполняющего логическую функцию триггера RS. При этом триггер 21 переходит в состояние, при котором на его выходе Q сигнал положительного уровня напряжения, соответствующий логической единице, переходит до уровня напряжения близкого к нулю, что соответствует логическому нулю. Этот сигнал логического нуля поступает на вход элемента 22, выполняющего логическую функцию 2И. В результате с выхода элемента 22 на вход коммутационного устройства 12 больше не поступает электрический сигнал положительного уровня напряжения. Поэтому коммутационное устройство 12 отключает обмотку 5 от источника электропитания 13. При перемещении следующих смежных колесных полюсов 2 под электромагнитные полюса 4 цикл работы процесса торможения повторяется.

Широтно-импульсный модулированный электрический сигнал с выхода устройства регулирования тормозной силы 11 осуществляет управление средним значением напряжения на нагрузке путем изменения скважности импульсов, управляющих коммутационным устройством 12 для регулирования тормозной силы, действующей на колесо автомобиля.

Этот режим продолжается до тех пор, пока при необходимости выключения режима торможения с выхода устройства регулирования тормозной силы 11 (см. фиг. 3) не прекратится подача электрического сигнал положительной полярности, который поступал на другой вход элемента 22 управляющего устройства 10. В этом случае с выхода элемента 22 на вход коммутационного устройства 12 уже не будет поступать электрический сигнал положительной полярности и торможение прекратится, так как электромагнитная обмотка 5 больше не будет подключаться к источнику питания 13.

При движении колеса автомобиля с закрепленными на диске колеса 1 колесными полюсами 2 против часовой стрелки, двухполюсный колесный электромеханический тормоз автомобиля работает следующим образом. В процессе вращения колесного полюса 2 (см. фиг. 1) против часовой стрелки колесный полюс 2 вначале занимает положение напротив датчика 9, вследствие чего на его выходе появляется электрический сигнал положительного уровня, соответствующий логической единице. Этот сигнал с датчика 9 поступает на вход Х1 цифрового сигнального процессора 18. Затем колесный полюс 2 занимает положение и напротив датчика 8, вследствие чего на его выходе появляется электрический сигнал положительного уровня, соответствующий логической единице. Этот сигнал поступает на вход Х2 цифрового сигнального процессора 18. Согласно алгоритму работы цифрового сигнального процессора 18, если вначале появляется сигнал логической единицы на его входе Х1, а затем появляется сигнал логической единицы на его на входе Х2, то в дальнейшем после перехода обоих сигналов до уровня напряжения, близкого к нулю, что соответствует логическому нулю на этих входах сигнального процессора 18, на его выходе V1 формируется прямоугольный электрический сигнал положительной полярности, соответствующий логической единице. Этот сигнал поступает на вход элемента 19, выполняющего логическую функцию 2ИЛИ. С выхода элемента 19 сигнал положительного уровня, соответствующий логической единице, поступает на вход S триггера 21, выполняющего логическую функцию триггера RS. При этом триггер 21 переходит в состояние, при котором на его выходе Q появляется электрический сигнал положительного уровня, соответствующий логической единице. Этот сигнал поступает на вход элемента 22, выполняющего логическую функцию 2И. При необходимости включения режима торможения с выхода устройства регулирования тормозной силы 11 (см. фиг. 3) подается электрический сигнал положительной полярности, соответствующий логической единице, который поступает на другой вход элемента 22 управляющего устройства 10. В этом случае с выхода элемента 22 на вход коммутационного устройства 12 поступает электрический сигнал положительной полярности. Коммутационное устройство 12 подключает электромагнитную обмотку 5 к источнику электропитания 13. В это время колесные полюса 2 занимают положение напротив электромагнитных полюсов 4 (см. фиг. 1 и фиг. 2). Магнитное поле, создаваемое электромагнитной обмоткой 5, проходит через один электромагнитный полюс 4, через рабочий воздушный зазор между электромагнитным полюсом 4 и колесным полюсом 2, через диск колеса 1, далее через смежный колесный полюс 2, через рабочий воздушный зазор между другим электромагнитным полюсом 4 и смежным колесным полюсом 2, и через другой электромагнитный полюс 4 замыкается на сердечнике 3 электромагнита. Тем самым магнитное поле создает тормозную силу, передаваемую на колесо автомобиля. В результате вращения колеса автомобиля далее, преодолев тормозной импульс, созданный магнитным полем, колесные полюса 2 продолжают вращаться и смежные колесные полюса 2 начинают выходить из-под электромагнитных полюсов 4. При этом колесный полюс 2 вначале занимает положение напротив датчика 7, на выходе которого, появляется электрический сигнал положительного уровня, соответствующий логической единице. Этот сигнал поступает на вход Х2 цифрового сигнального процессора 17. Затем полюс 2 занимает положение и напротив датчика 6, на выходе которого появляется электрический сигнал положительного уровня, соответствующий логической единице. Этот сигнал поступает на вход Х1 цифрового сигнального процессора 17. Согласно алгоритму работы цифрового сигнального процессора 17, если вначале появляется сигнал положительного уровня, соответствующий логической единице, на его входе Х2, а затем сигнал положительного уровня, соответствующий логической единице, на входе Х1, то в дальнейшем после перехода обоих сигналов до уровня напряжения, близкого к нулю, что соответствует логическому нулю, на этих входах сигнального процессора 17, на его выходе V2 появляется прямоугольный электрический сигнал положительной полярности, соответствующий логической единице. Этот сигнал поступает на вход элемента 20, выполняющего логическую функцию 2ИЛИ. С выхода элемента 20 сигнал положительного уровня, соответствующий логической единице, поступает на вход R триггера 21, выполняющего логическую функцию триггера RS. При этом триггер 21 переходит в состояние, при котором на его выходе Q сигнал положительного уровня напряжения, соответствующий логической единице, переходит до уровня напряжения, близкого к нулю, что соответствует логическому нулю. Этот сигнал логического нуля поступает на вход элемента 22, выполняющего логическую функцию 2И. В результате с выхода элемента 22 на вход коммутационного устройства 12 больше не поступает электрический сигнал положительного уровня и оно отключает электромагнитную обмотку 5 от источника электропитания 13. При перемещении следующей пары смежных колесных полюсов 2 под электромагнитные полюса 4 цикл работы процесса торможения повторяется. Этот режим продолжается до тех пор, пока при необходимости выключения режима торможения с выхода устройства регулирования тормозной силы 11 (см. фиг. 3) не прекратится подача электрического сигнал положительной полярности, который поступал на другой вход элемента 22 управляющего устройства 10. В этом случае с выхода элемента 22 на вход коммутационного устройства 12 уже не будет поступать электрический сигнал положительной полярности и торможение прекратится, так как электромагнитная обмотка 5 больше не будет подключаться к источнику питания 13 через коммутационное устройство 12.

Фиксатор колесного полюса 23 (см. фиг. 1 и фиг. 2) после полной остановки вращения колесных полюсов 2 выдвигает штифт фиксатора колесного полюса 24 в пространство между колесными полюсами 2 и тем самым предотвращает вращение колеса автомобиля. После этого двухполюсный колесный электромеханический тормоз автомобиля может быть обесточен.

Похожие патенты RU2634500C1

название год авторы номер документа
Многополюсный колесный электромеханический тормоз автомобиля 2017
  • Лещенко Василий Васильевич
RU2648506C1
Колесный электромеханический тормоз автомобиля 2016
  • Лещенко Василий Васильевич
RU2640679C1
Колесный электромеханический тормоз самолета 2016
  • Лещенко Василий Васильевич
RU2624528C1
КОЛЕСНЫЙ ЭЛЕКТРОМЕХАНИЧЕСКИЙ ТОРМОЗ 2011
  • Лещенко Василий Васильевич
RU2455176C1
ДИСКОВЫЙ ЭЛЕКТРОМЕХАНИЧЕСКИЙ ТОРМОЗ 2011
  • Лещенко Василий Васильевич
RU2452636C1
ОСЕВОЙ ЭЛЕКТРОМЕХАНИЧЕСКИЙ ТОРМОЗ 2011
  • Лещенко Василий Васильевич
RU2450940C1
ДИСКОВЫЙ ЭЛЕКТРОМЕХАНИЧЕСКИЙ ТОРМОЗ САМОЛЕТА 2015
  • Лещенко Василий Васильевич
RU2585682C9
ДИСКОВЫЙ ЭЛЕКТРОМЕХАНИЧЕСКИЙ ТОРМОЗ САМОЛЕТА 2015
  • Лещенко Василий Васильевич
RU2589527C9
ДИСКОВЫЙ ЭЛЕКТРОМЕХАНИЧЕСКИЙ ТОРМОЗ САМОЛЕТА 2015
  • Лещенко Василий Васильевич
RU2586098C9
МНОГОДИСКОВЫЙ ЭЛЕКТРОМЕХАНИЧЕСКИЙ ТОРМОЗ САМОЛЕТА 2015
  • Лещенко Василий Васильевич
RU2597427C9

Иллюстрации к изобретению RU 2 634 500 C1

Реферат патента 2017 года Двухполюсный колесный электромеханический тормоз автомобиля

Изобретение относится к электромагнитным тормозам. Двухполюсный колесный электромеханический тормоз автомобиля содержит расположенные на колесе автомобиля, выполненные из магнитного материала колесные полюса (2), ориентированные радиально. Смежная пара колесных полюсов (2) располагается с минимальным воздушным зазором к полюсам электромагнита (4), закрепленного на поворотном кулаке переднего колеса автомобиля или на задней балке автомобиля. По окружности рядом с электромагнитным полюсом размещены датчики (6, 7, 8, 9) положения колесного полюса (2), подключенные своими выходами к входам управляющего устройства, соединенного своим выходом с входом коммутационного устройства. Коммутационное устройство подключает обмотку электромагнита (5) к источнику электропитания. К другому входу управляющего устройства подключен выход устройства регулирования тормозной силы. На поворотном кулаке переднего колеса автомобиля или на задней балке автомобиля рядом с электромагнитным полюсом и траекторией движения колесного полюса закреплен фиксатор колесного полюса (2), содержащий штифт фиксатора колесного полюса (2). Достигается повышение надежности. 3 ил.

Формула изобретения RU 2 634 500 C1

Двухполюсный колесный электромеханический тормоз автомобиля, отличающийся тем, что на колесе автомобиля выполнены из магнитного материала колесные полюса, ориентированные радиально, смежная пара колесных полюсов располагается с минимальным воздушным зазором к полюсам электромагнита, закрепленного на поворотном кулаке переднего колеса автомобиля или на задней балке автомобиля, и по окружности рядом с электромагнитным полюсом размещены датчики положения колесного полюса, подключенные своими выходами к входам управляющего устройства, соединенного своим выходом с входом коммутационного устройства, которое подключает обмотку электромагнита к источнику электропитания, к другому входу управляющего устройства подключен выход устройства регулирования тормозной силы, на поворотном кулаке переднего колеса автомобиля или на задней балке автомобиля рядом с электромагнитным полюсом и траекторией движения колесного полюса закреплен фиксатор колесного полюса, содержащий штифт фиксатора колесного полюса.

Документы, цитированные в отчете о поиске Патент 2017 года RU2634500C1

ЭЛЕКТРОМАГНИТНЫЙ ТОРМОЗ 2005
  • Толстунов Сергей Андреевич
  • Мозер Сергей Петрович
  • Толстунов Антон Сергеевич
RU2279753C1
ДИСКОВЫЙ ТОРМОЗ 2009
  • Колесов Владимир Александрович
RU2458267C2
US 20060255676 A1, 16.11.2006.

RU 2 634 500 C1

Авторы

Лещенко Василий Васильевич

Даты

2017-10-31Публикация

2017-01-11Подача