ТЕПЛОСТОЙКАЯ И РАДИАЦИОННО-СТОЙКАЯ СТАЛЬ Российский патент 2017 года по МПК C22C38/60 C22C38/52 

Описание патента на изобретение RU2634867C1

Изобретение относится к области металлургии, в частности к сталям для основного оборудования атомных энергетических установок.

Известна радиационно-стойкая сталь 15Х2МФА для изготовления корпусов ядерных реакторов, содержащая углерод, кремний, марганец, хром, ванадий, молибден, никель, кобальт, медь, мышьяк, серу, фосфор, сурьму, олово и железо при следующих соотношениях компонентов, мас. %: углерод 0,13-0,18; кремний 0,17-0,37; марганец 0,30-0,60; хром 2,5-3,0; ванадий 0,25-0,35; молибден 0,60-0,80; никель ≈0,4; кобальт ≈0,025; медь ≈0,01; мышьяк ≈0,01; сера ≈0,015; фосфор ≈0,012; сурьма ≈0,005; олово ≈0,005; железо остальное.

(RU 2135623, C22C 38/52, опубликовано 27.08.1999)

Наиболее близкой по технической сущности и достигаемому результату является сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, медь, кобальт, серу, фосфор, мышьяк, сурьму, олово, железо при следующем соотношении компонентов, мас. %: углерод 0,13-0,18; кремний 0,17-0,37; марганец 0,30-0,60; хром 1,8-2,3; никель 1,0-1,3; молибден 0,5-0,7; ванадий 0,10-0,12; медь 0,005-0,06; кобальт 0,005-0,03; сера 0,0005-0,006; фосфор 0,0005-0,006; мышьяк 0,005-0,010; сурьма 0,0005-0,005; олово 0,0005-0,005; водород 0,0001-0,0002; железо - остальное. При этом суммарное содержание фосфора, сурьмы и олова определяется следующим соотношением (P+Sb+Sn)≤0,012%.

(RU 2441940, C22C 38/60, C22C 38/52, опубликовано 10.02.2012)

Известные стали обладают высокой стойкостью к радиационному охрупчиванию, однако, при характерных для реакторов перспективных проектов повышенных температурах эксплуатации (до 400°C) они не обладают требуемыми характеристиками по пределам текучести и прочности, а также не могут гарантированно обеспечить требуемый ресурс корпуса для реакторов перспективных проектов (до 120 лет).

Задачей изобретения и его техническим результатом является повышение служебных и технологических характеристик стали для корпуса реактора: предела текучести и предела прочности при температуре эксплуатации до 400°C, обеспечение гарантированно низких значений критической температуры хрупкости, повышение стойкости к охрупчиванию при термическом воздействии и нейтронном облучении.

Технический результат достигают тем, что теплостойкая и радиционно-стойкая сталь содержит углерод, кремний, марганец, хром, никель, молибден, ванадий, медь, кобальт, серу, фосфор, мышьяк, сурьму, олово, водород, алюминий, азот, кислород, висмут, свинец и железо при следующем соотношении компонентов, мас. %:

углерод 0,10-0,20 кремний 0,02-0,40 марганец 0,02-0,60 хром 2,0-2,5 никель 1,25-2,0 молибден 0,35-0,7 ванадий 0,10-0,15 медь 0,005-0,03 кобальт 0,001-0,03 сера 0,0005-0,003 фосфор 0,0005-0,004 мышьяк 0,001-0,004 сурьма 0,001-0,004 олово 0,001-0,004 водород 0,00001-0,00012 алюминий 0,015-0,035 азот 0,0001-0,008 кислород 0,0001-0,0030 висмут 0,001-0,004 свинец 0,001-0,004 железо остальное

Технический результат также достигается тем, что сталь содержит суммарное содержание фосфора, сурьмы, олова, висмута и свинца, определяемое соотношением (P+Sb+Sn+Bi+Pb)≤0,008 мас. %; дополнительно содержит цирконий, ниобий и редкоземельные металлы, выбранные из группы, включающей иттрий, неодим и празеодим, при следующем соотношении компонентов, мас. %: ниобий 0,005-0,08; цирконий 0,005-0,04; иттрий, и/или неодим, и/или празеодим 0,005-0,12, причем суммарное содержание иттрия, неодима и празеодима составляет 0,005-0,12 мас. %.

Оптимальное содержание углерода 0,10-0,20 мас. %, хрома 2,0-2,5 мас. %, никеля 1,25-2,0 мас. % и ванадия 0,10-0,15 мас. % обеспечивает повышение прочностных и вязко-пластических свойств стали: предела текучести и предела прочности, а также увеличение бейнитной прокаливаемости изделия, например, заготовки элемента корпуса атомного реактора.

Ограничение индивидуального содержания фосфора 0,0005-0,004 мас. %, сурьмы 0,001-0,004 мас. %, олова 0,001-0,004 мас. %, висмута 0,001-0,004 мас. % и свинца 0,001-0,004 мас. %, а также их суммарного содержания ≤0,008 мас. % обеспечивает повышение комплекса вязко-пластических свойств, гарантирует низкие значения критической температуры хрупкости и снижает чувствительность стали к тепловому и радиационному охрупчиванию.

При этом содержание в стали кислорода 0,0001-0,0030 мас. %, азота 0,0001-0,008 мас. % и водорода 0,00001-0,00012 мас. % обеспечивает высокую стабильность вязко-пластических свойств и низкую чувствительность к флокенообразованию.

Введение добавок алюминия 0,015-0,035, а также иттрия 0,005-0,12 мас. %, и/или неодима 0,005-0,12 мас. %, и/или празеодима 0,005-0,12 мас. %, в сочетании с ниобием (0,005-0,08 мас. %) и цирконием (0,005-0,04 мас. %) обеспечивает возможность дополнительного глубокого рафинирования металла от газов и неметаллических включений, что дополнительно обеспечивает гарантированно низкие значения критической температуры хрупкости, повышение стойкости к охрупчиванию при термическом воздействии и нейтроном облучении. При этом суммарное содержание иттрия, неодима и празеодима в стали должно составлять 0,005-0,12 мас. %. Ниобий, кроме контроля границ зерен, в присутствии никеля заметно усиливает эффект дисперсионного твердения, что обеспечивает повышение прочностных характеристик и теплостойкости при сохранении вязко-пластических характеристик на высоком уровне.

Оптимальное содержание алюминия, ниобия, циркония и редкоземельных металлов иттрия, неодима и празеодима обеспечивает глобулярную морфологию, малый размер (≈1 мкм) и равномерное распределение остаточных неметаллических включений (преимущественно, комплексных оксисульфидов). За счет этого улучшается однородность материала, уменьшается анизотропия и количество внутренних дефектов, повышаются механические свойства стали. Снижению содержания неметаллических включений способствует также ограничение содержания серы (0,005-0,003 мас. %).

Были исследованы служебные характеристики стали, содержащей, мас. %: углерод 0,16; кремний 0,032; марганец 0,04; хром 2,2; никель 1,85; молибден 0,55; ванадий 0,12; медь 0,006; кобальт 0,02; сера 0,0008; фосфор 0,0006; мышьяк 0,002; сурьма 0,002; олово 0,002; водород 0,0001; алюминий 0,022; азот 0,0009; кислород 0,0001-0,0012; висмут 0,001; свинец 0,001; железо – остальное.

Установлено, что сталь по изобретению после соответствующей термической обработки обеспечивает требуемый уровень и стабильность важнейших физико-механических свойств, определяющих работоспособность материала при его использовании для изготовления корпуса атомного реактора.

Так, заявляемая сталь обеспечивает категорию прочности КП50-КП55 при температурах до 400°C и имеет критическую температуру хрупкости не выше минус 90°C. Проведенные эксперименты по тепловому охрупчиванию по режиму, эквивалентному 60 годам эксплуатации, показали, что предлагаемая сталь имеет меньший сдвиг критической температуры по сравнению с имеющейся сталью промышленной выплавки (25°C и 40°C, соответственно). Повышенные на 15-20% прочностные свойства стали по изобретению позволят изготавливать из нее корпуса реакторов перспективных проектов с рабочей температурой до 400°C, а высокий уровень вязкопластических свойств и низкая скорость их деградации позволят обеспечить ресурс корпуса реактора до 100-120 лет.

Похожие патенты RU2634867C1

название год авторы номер документа
ТЕПЛОСТОЙКАЯ И РАДИАЦИОННО-СТОЙКАЯ СТАЛЬ 2016
  • Марков Сергей Иванович
  • Лебедев Андрей Геннадьевич
  • Ромашкин Александр Николаевич
  • Баликоев Алан Георгиевич
  • Козлов Павел Александрович
  • Толстых Дмитрий Сергеевич
  • Силаев Алексей Альбертович
  • Абрамов Владимир Владимирович
  • Новиков Владимир Александрович
RU2633408C1
ТЕПЛОСТОЙКАЯ И РАДИАЦИОННОСТОЙКАЯ СТАЛЬ 2021
  • Марков Сергей Иванович
  • Баликоев Алан Георгиевич
  • Толстых Дмитрий Сергеевич
  • Иванов Иван Алексеевич
  • Дуб Владимир Семенович
  • Тахиров Асиф Ашур-Оглы
  • Петин Михаил Михайлович
  • Тохтамышев Аллен Николаевич
RU2773227C1
ВЫСОКОПРОЧНАЯ ТЕПЛОСТОЙКАЯ И РАДИАЦИОННОСТОЙКАЯ СТАЛЬ 2021
  • Марков Сергей Иванович
  • Баликоев Алан Георгиевич
  • Толстых Дмитрий Сергеевич
  • Иванов Иван Алексеевич
  • Дуб Владимир Семенович
  • Тахиров Асиф Ашур-Оглы
  • Хаймин Сергей Валерьевич
  • Мальгинов Антон Николаевич
RU2777681C1
ХЛАДОСТОЙКАЯ СТАЛЬ ДЛЯ УСТРОЙСТВ ХРАНЕНИЯ ОТРАБОТАВШИХ ЯДЕРНЫХ МАТЕРИАЛОВ 2022
  • Дегтярев Александр Фёдорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Дуб Алексей Владимирович
RU2804233C1
СВАРОЧНАЯ ПРОВОЛОКА ДЛЯ АВТОМАТИЧЕСКОЙ СВАРКИ ТЕПЛОУСТОЙЧИВЫХ СТАЛЕЙ ПЕРЛИТНОГО КЛАССА 2013
  • Гордиенков Юрий Степанович
  • Воронов Александр Владимирович
  • Бобриков Алексей Леонидович
  • Карзов Георгий Павлович
  • Галяткин Сергей Николаевич
  • Михалева Эмма Ивановна
  • Ворона Роман Александрович
  • Тимофеев Михаил Николаевич
RU2530611C1
ХЛАДОСТОЙКАЯ СТАЛЬ 2017
  • Марков Сергей Иванович
  • Дуб Владимир Семенович
  • Баликоев Алан Георгиевич
  • Орлов Виктор Валерьевич
  • Косырев Константин Львович
  • Лебедев Андрей Геннадьевич
  • Петин Михаил Михайлович
RU2648426C1
СТАЛЬ 2011
  • Дуб Владимир Семенович
  • Макарычева Елена Владимировна
  • Ромашкин Александр Николаевич
  • Колпишон Эдуард Юльевич
  • Мальгинов Антон Николаевич
  • Муханов Евгений Львович
RU2477335C1
СВАРОЧНАЯ ПРОВОЛОКА ДЛЯ АВТОМАТИЧЕСКОЙ СВАРКИ ТЕПЛОУСТОЙЧИВЫХ СТАЛЕЙ ПЕРЛИТНОГО КЛАССА 2010
  • Карзов Георгий Павлович
  • Галяткин Сергей Николаевич
  • Михалева Эмма Ивановна
  • Яковлева Галина Петровна
  • Литвинов Сергей Геннадьевич
  • Ворона Роман Александрович
RU2451588C2
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ 2013
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Дегтярев Александр Федорович
  • Орлов Александр Сергеевич
  • Ершов Николай Сергеевич
RU2515716C1
СТАЛЬ 2010
  • Дуб Владимир Семенович
  • Дуб Алексей Владимирович
  • Юханов Вячеслав Алексеевич
  • Марков Сергей Иванович
  • Старченко Евгений Григорьевич
  • Дурынин Виктор Алексеевич
  • Шур Андрей Дмитриевич
  • Рыжов Сергей Борисович
  • Банюк Геннадий Федорович
  • Зубченко Александр Степанович
RU2441940C1

Реферат патента 2017 года ТЕПЛОСТОЙКАЯ И РАДИАЦИОННО-СТОЙКАЯ СТАЛЬ

Изобретение относится к области металлургии, а именно к теплостойким радиационно-стойким сталям, используемым для изготовления основного оборудования атомных энергетических установок. Сталь содержит, мас.%: углерод 0,10-0,20, кремний 0,02-0,40, марганец 0,02-0,6, хром 2,0-2,5, никель 1,25-2,0, молибден 0,35-0,7, ванадий 0,10-0,15, медь 0,005-0,03, кобальт 0,001-0,03, сера 0,0005-0,003, фосфор 0,0005-0,004, мышьяк 0,001-0,004, сурьма 0,001-0,004, олово 0,001-0,004, водород 0,00001-0,00012, алюминий 0,015-0,035, азот 0,0001-0,008, кислород 0,0001-0,0030, висмут 0,001-0,004, свинец 0,001-0,004, железо - остальное. Повышаются служебные и технологические характеристики стали, а именно предел текучести и предел прочности при температуре эксплуатации до 400°C, обеспечиваются гарантированно низкие значения критической температуры хрупкости, повышается стойкость к охрупчиванию при термическом воздействии и нейтронном облучении. 3 з.п. ф-лы.

Формула изобретения RU 2 634 867 C1

1. Теплостойкая радиационно-стойкая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, медь, кобальт, серу, фосфор, мышьяк, сурьму, олово, водород и железо, отличающаяся тем, что она дополнительно содержит алюминий, азот, кислород, висмут и свинец, при следующем соотношении компонентов, мас.%: углерод 0,10-0,20, кремний 0,02-0,40, марганец 0,02-0,6, хром 2,0-2,5, никель 1,25-2,0, молибден 0,35-0,7, ванадий 0,10-0,15, медь 0,005-0,03, кобальт 0,001-0,03, сера 0,0005-0,003, фосфор 0,0005-0,004, мышьяк 0,001-0,004, сурьма 0,001-0,004, олово 0,001-0,004, водород 0,00001-0,00012, алюминий 0,015-0,035, азот 0,0001-0,008, кислород 0,0001-0,0030, висмут 0,001-0,004, свинец 0,001-0,004, железо - остальное.

2. Сталь по п. 1, отличающаяся тем, что суммарное содержание фосфора, сурьмы, олова, висмута и свинца определяется следующим соотношением (P+Sb+Sn+Bi+Pb)≤0,008 мас.%.

3. Сталь по п. 1 или 2, отличающаяся тем, что она дополнительно содержит цирконий, ниобий и редкоземельные металлы, выбранные из группы, включающей иттрий, неодим и празеодим, при следующем соотношении компонентов, мас.%:

ниобий 0,005-0,08 цирконий 0,005-0,04 иттрий и/или неодим и/или празеодим 0,005-0,12

4. Сталь по п. 3, отличающаяся тем, что суммарное содержание иттрия, неодима и празеодима составляет 0,005-0,12 мас.%.

Документы, цитированные в отчете о поиске Патент 2017 года RU2634867C1

СТАЛЬ 2010
  • Дуб Владимир Семенович
  • Дуб Алексей Владимирович
  • Юханов Вячеслав Алексеевич
  • Марков Сергей Иванович
  • Старченко Евгений Григорьевич
  • Дурынин Виктор Алексеевич
  • Шур Андрей Дмитриевич
  • Рыжов Сергей Борисович
  • Банюк Геннадий Федорович
  • Зубченко Александр Степанович
RU2441940C1
СТАЛЬ ДЛЯ КОРПУСНЫХ КОНСТРУКЦИЙ АТОМНЫХ ЭНЕРГОУСТАНОВОК 2008
  • Горынин Игорь Васильевич
  • Карзов Георгий Павлович
  • Теплухина Ирина Владимировна
  • Грекова Ирина Ивановна
  • Савельева Ирина Геннадьевна
  • Бурочкина Ирина Михайловна
RU2397272C2
СТАЛЬ ДЛЯ КОРПУСОВ АТОМНЫХ РЕАКТОРОВ ПОВЫШЕННОЙ НАДЕЖНОСТИ И РЕСУРСА 1999
  • Горынин И.В.
  • Карзов Г.П.
  • Филимонов Г.Н.
  • Бережко Б.И.
  • Цуканов В.В.
  • Грекова И.И.
  • Орлова В.Н.
  • Николаев В.А.
  • Повышев И.А.
  • Просвирин А.В.
  • Цыканов В.А.
  • Голованов В.Н.
  • Красноселов В.А.
  • Петров В.В.
  • Черняховский С.А.
  • Сулягин В.Р.
  • Титова Т.И.
  • Драгунов Ю.Г.
  • Банюк Г.Ф.
  • Комолов В.М.
RU2166559C2
SU 1669207 A1, 27.05.1996
US 4212668 A, 15.07.1980
EP 1693855 A2, 23.08.2006
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1

RU 2 634 867 C1

Авторы

Дуб Владимир Семенович

Марков Сергей Иванович

Лебедев Андрей Геннадьевич

Ромашкин Александр Николаевич

Куликов Анатолий Павлович

Баликоев Алан Георгиевич

Козлов Павел Александрович

Мальгинов Антон Николаевич

Толстых Дмитрий Сергеевич

Новиков Сергей Владимирович

Силаев Алексей Альбертович

Корнеев Антон Алексеевич

Новиков Владимир Александрович

Даты

2017-11-07Публикация

2016-12-28Подача